5

How to prove that $(1 + x)^\frac{1}{b}$ (where $b$ is an integer) can be expressed as a formal power series without using Binomial theorem?

Mark
  • 3,109

5 Answers5

11

The coefficient recurrence arises from the obvious first-order differential equation, namely

$$\rm\ \frac{y'}y\ =\ (log\ y)'\:=\ \bigg(\frac{log(1+x)}b\bigg)'\:=\ \frac{1}{b\ (1+x)}\ \ \ \Rightarrow\ \ \ y\: =\ b\ (1+x)\ y'$$

Therefore $\displaystyle\rm\ \ y\ =\ \sum_{k\ge 0}\ a_k x^k\ =\ b\ (1+x)\ \sum_{k\ge 0}\ (k+1)\ a_{k+1}\ x^k\:,\ \: $ which, after algebra, yields

$$\rm a_{k+1}\ =\ \frac{1-b\:k}{b\:(k+1)}\ a_k,\ \ \ a_0 = 1$$

As a check, note that it yields the binomial formula for $\rm\ b = 1/n,\ y = (1+x)^n\ $ since then

$$\rm \frac{a_{k+1}}{a_k}\ =\ \frac{n-k}{k+1}\ =\ \frac{n\choose k+1\:}{n\choose k\:}$$

and $\rm\ a_k = 0\ $ for $\rm\ k > n\ $ since the above implies $\rm\ a_{n+1} = 0\ $ hence $\rm\ a_{n+i} = 0\ $ for all $\rm\:i>0\:.$

Bill Dubuque
  • 272,048
  • Update: It works – Mark May 13 '11 at 23:23