A proof by induction is elementary and not difficult. Let $$S_n(x) = \sum_{k=0}^n \frac{2^k}{1 + x^{2^k}}, \quad P_n(x) = \frac{1}{x-1} + \frac{2^{n+1}}{\color{red}{1 - x^{2^{n+1}}}}.$$ Note that you have a typographical error for $P_n(x)$; the correct expression is shown in red text. The claim is that for all nonnegative integers $n$, we have $S_n = P_n$. The proof of the inductive step is simply
$$\begin{align}
S_{n+1}(x) &= S_n(x) + \frac{2^{n+1}}{1 + x^{2^{n+1}}} \\
&= P_n(x) + \frac{2^{n+1}}{1 + x^{2^{n+1}}} \\
&= \frac{1}{x-1} + \frac{2^{n+1}}{1 - x^{2^{n+1}}} + \frac{2^{n+1}}{1 + x^{2^{n+1}}} \\
&= \frac{1}{x-1} + 2^{n+1} \left( \frac{(1 + x^{2^{n+1}}) + (1 - x^{2^{n+1}})}{(1 - x^{2^{n+1}})(1 + x^{2^{n+1}})} \right) \\
&= \frac{1}{x-1} + 2^{n+1} \left( \frac{2}{1 - x^{2^{n+2}}} \right) \\
&= P_{n+1}(x).
\end{align}$$
The way that this simplifies also suggests that a direct proof is possible via algebraic simplification of a telescoping sum, e.g., $$\frac{2^{k+1}}{1 - x^{2^{k+1}}} = \frac{2^k}{1 - x^{2^k}} + \frac{2^k}{1 + x^{2^k}}$$ suggests defining $$a_k (x) = \frac{2^k}{1 + x^{2^k}}, \quad b_k(x) = \frac{2^k}{1 - x^{2^k}} $$ hence $$a_k(x) = b_{k+1}(x) - b_k(x)$$ and $$S_n(x) = \sum_{k=0}^n a_k(x) = \sum_{k=0}^n b_{k+1}(x) - b_k(x) = b_{n+1}(x) - b_0(x) = P_n(x).$$
x \ne 1– GEdgar Nov 07 '20 at 00:45