Sorry for my previous misunderstanding on the question. I will add some detail for the path from @user's Hint.
Above all, for first order we have
$$
A_1=\lim_{x\to0} \frac{x-\sin x}{x^3}=\frac1{6}, \quad B_1=\lim_{x\to0} \frac{1-\cos x}{x^2} =\frac1{2}
$$
which is proved in that post before.
To pursue higher order result exampled by $B_2$ denoted as
$$
B_2=\lim_{x\to0} \frac{\cos x-(1-\frac1{2}x^2)}{x^4}=\lim_{x\to0} \frac1{x^2}\left(\frac1{2}-\frac{1-\cos x}{x^2}\right)
$$
so we have
$$
B_2=\lim_{x\to0} \frac1{4x^2}\left(\frac1{2}-\frac{1-\cos2x}{4x^2}\right)
$$
hence
$$
4B_2=\lim_{x\to0} \frac1{x^2}\left(\frac1{2}-\frac{1-\cos2x}{4x^2}\right)
$$
$$
\frac{B_2}{4}=\lim_{x\to0} \frac1{x^2}\left(\frac1{8}-\frac{1-\cos x}{4x^2}\right)
$$
whose subtraction gives
$$
\begin{aligned}
\frac{15}{4}B_2
&=\lim_{x\to0} \frac1{x^2}\left(\frac3{8}-\frac{\cos x-\cos2x}{4x^2}\right)=\lim_{x\to0} \frac1{x^2}\left(\frac3{8}-\frac{\sin^2 x-\sin^2\frac{x}{2}}{2x^2}\right)\\
&=\lim_{x\to0} \frac1{x^2}\left(\frac3{8}-\frac{4\sin^2\frac{x}{2}(1-\sin^2\frac{x}{2})-\sin^2\frac{x}{2}}{2x^2}\right)\\
&=\lim_{x\to0} \frac1{x^2}\left(\frac3{8}-\frac{3\sin^2\frac{x}{2}}{2x^2}\right) + \lim_{x\to0} \frac{2\sin^4\frac{x}{2}}{x^4}\\
&=\lim_{x\to0} \frac3{8}\left(\frac{x^2-4\sin^2\frac{x}{2}}{x^4}\right) + \lim_{x\to0} \frac{2\sin^4\frac{x}{2}}{x^4}\\
&=\lim_{x\to0} \frac3{8}\left(\frac{x+2\sin\frac{x}{2}}{x}\right)\left(\frac{x-2\sin\frac{x}{2}}{x^3}\right) + \lim_{x\to0} \frac{2\sin^4\frac{x}{2}}{x^4}\\
&=\lim_{x\to0} \frac3{8}\left(\frac{\frac{x}{2}+\sin\frac{x}{2}}{\frac{x}{2}}\right)\left(\frac{\frac{x}{2}-\sin\frac{x}{2}}{4\cdot(\frac{x}{2})^3}\right) + \lim_{x\to0} \frac{\sin^4\frac{x}{2}}{8\cdot(\frac{x}{2})^4}
=\frac5{32}
\end{aligned}
$$
where we need to recall the value of $A_1$, and obtain
$$
B_2=\frac1{24}
$$
I think you can as well get $A_2$, which is
$$
A_2=\lim_{x\to0} \frac{\sin x-(x-\frac1{6}x^2)}{x^5}=\frac1{120}
$$
by almost the same approach, and that is the resources to solve $L_1$.
However $L_2$ is trivial
$$
L_2=\lim_{x\to0} \frac{2x}{16\sin 2x}\left(2+\cos2x-\frac{3\sin2x}{2x}\right)=\lim_{x\to0} \frac{x}{16\sin x}\left(2+\cos x-\frac{3\sin x}{x}\right)=0
$$
for we do not need to calculate the infinitesimal with high order, or if you want, you can get the proper result from $L_1$, which is
$$
2+\cos x-\frac{3\sin x}{x} \sim \frac{x^4}{60} \quad (x\to0)
$$
From another view, this is a hint how to make up this expression, just taking these lower order items back we easily have
$$
2+\cos x-\frac{3\sin x}{x} = \left(\cos x-1+\frac{x^2}{2}\right)-3\left(\frac{\sin x}{x}-1+\frac{x^2}{6}\right) \sim (B_2-3A_2)x^4 = \frac{x^4}{60}
$$
which is very similar to the path of series expansion.