Prove/disprove $$\sum_{n\ge0}(-1)^n\frac{\Gamma(\tfrac{n+1}2)}{\Gamma(\tfrac{n}2+1)}=\frac{2}{\sqrt{\pi}}.\tag 1$$
As far as I can tell, this is true, although it seems to converge very slowly.
I came up with a proof but I don't know if it's valid.
Let $$J=\int_0^\pi \frac{xdx}{1+\sin x}.$$ On one hand, we have $$\frac1{1+\sin x}=\sum_{n\ge0}(-1)^n\sin(x)^n,$$ so that $$J=\sum_{n\ge0}(-1)^n p_n,\tag 2$$ where $$ \begin{align} p_n&=\int_0^\pi x\sin(x)^ndx\\ &=\int_\pi^0 -(\pi-x)\sin(\pi-x)^ndx\\ &=\pi\int_0^\pi\sin(x)^ndx-p_n\\ \Rightarrow p_n&=\frac\pi2\int_0^\pi\sin(x)^ndx. \end{align} $$ And since $\sin(x)=\sin(\pi-x)$, $$p_n=\pi\int_0^{\pi/2}\sin(x)^ndx=\frac{\pi^{3/2}}{2}\frac{\Gamma(\tfrac{n+1}2)}{\Gamma(\tfrac{n}2+1)}.\tag 3$$
On the other hand, we have $1+\sin x=2\sin^2(\tfrac{x}2-\tfrac\pi4)$, so that $$\begin{align} J&=\frac12\int_0^\pi\frac{xdx}{\sin^2(\tfrac{x}2-\tfrac\pi4)}\\ &=2\int_{\pi/4}^{3\pi/4}\frac{tdt}{\sin^2t}-\frac\pi2\int_{\pi/4}^{3\pi/4}\frac{dt}{\sin^2 t}\\ &=2\left(\ln\sin x-x\cot x\right)\bigg|_{\pi/4}^{3\pi/4}-\frac\pi2\left(-\cot x\right)\bigg|_{\pi/4}^{3\pi/4}\\ &=2\pi-\frac\pi2\cdot2=\pi. \end{align}$$ Then from $(2)$ and $(3)$, we have $$\frac{\pi^{3/2}}{2}\sum_{n\ge0}(-1)^n\frac{\Gamma(\tfrac{n+1}2)}{\Gamma(\tfrac{n}2+1)}=\pi,$$ which is equivalent to $(1)$. $\square$
Can you come up with any other proofs to $(1)$? Thanks!
Edit (11/12/2020):
Here is a proof that the interchange of the sum and integral in $(2)$ is valid.
The partial sums $$S_M(x)=\sum_{n=0}^M(-1)^n\sin(x)^n$$ form a uniformly convergent sequence of functions for $x$ in $[0,\pi/2)$ or $(\pi/2,\pi]$, and they converge to the limit $$\lim_{M\to\infty}S_M(x)=\frac1{1+\sin x},\qquad x\in[0,\pi]\setminus\{\pi/2\}.$$ Choose $\varepsilon>0$ and notice that $$J=\int_{0}^{\pi}\frac{xdx}{1+\sin x}=\int_{\pi/2-\varepsilon}^{\pi/2+\varepsilon}\frac{xdx}{1+\sin x}+\int_0^{\pi/2-\varepsilon}\frac{xdx}{1+\sin x}+\int_{\pi/2+\varepsilon}^\pi\frac{xdx}{1+\sin x}.$$ The sums $S_M(x)$ converge uniformly as $M\to\infty$ when $x\in[0,\pi/2-\varepsilon]\cup[\pi/2+\varepsilon,\pi]$, so we can interchange the sum and integral to get $$J=\int_{\pi/2-\varepsilon}^{\pi/2+\varepsilon}\frac{xdx}{1+\sin x}+\sum_{n\ge0}(-1)^n(a_n(\pi/2-\varepsilon)+b_n(\pi/2+\varepsilon)),$$ where $$\begin{align} a_n(t)&=\int_0^t x\sin(x)^ndx\\ b_n(t)&=\int_t^\pi x\sin(x)^ndx. \end{align}$$ We have $a_n(t)+b_n(t)=p_n$ for all $t\in[0,\pi]$. As $\varepsilon$ approaches $0$, $\int_{\pi/2-\varepsilon}^{\pi/2+\varepsilon}\frac{xdx}{1+\sin x}$ approaches $0$.
And since $a_n(t), b_n(t)$ are continuous, $a_n(\pi/2-\varepsilon)+b_n(\pi/2+\varepsilon)$ approaches $a_n(\pi/2)+b_n(\pi/2)=p_n$, so that $$J=\sum_{n\ge0}(-1)^np_n$$ as desired. $\square$