2

Note that the integral can(not) be simplified as $$ 2\int_0^{1/\sqrt 3} \frac{x^4}{1-x^4} \cos^{-1} \left(\frac{2x}{1+x^2}\right)dx $$ Since $\cos^{-1}$ is not an even function. Let $x=\tan y$ $$ \implies \int_0^{\pi/6}\frac{x^4}{1-x^4} \left(\frac{\pi}{2} -2y\right) \sec^2(y)\ dy $$

So how do I solve the original problem?

Infiniticism
  • 8,644
  • 1
  • 22
  • 67
Aditya
  • 6,191

2 Answers2

4

Hint:

$$\int_{-a}^a\dfrac{x^4}{1-x^4}\cos^{-1}\dfrac{2x}{1+x^2}\ dx$$

$$=\int_{-a}^0\dfrac{x^4}{1-x^4}\cos^{-1}\dfrac{2x}{1+x^2}\ dx+\int_0^a\dfrac{x^4}{1-x^4}\cos^{-1}\dfrac{2x}{1+x^2}dx=I_1+I_2$$

For the first integral set $x=-y,dx=-dy$

$$I_1=\int_{-a}^0\dfrac{x^4}{1-x^4}\cos^{-1}\dfrac{2x}{1+x^2}\ dx=-\int_a^0\dfrac{y^4}{1-y^4}\cos^{-1}\dfrac{(-2y)}{1+y^2}dy$$

$$=\int_0^a\dfrac{y^4}{1-y^4}\cos^{-1}\dfrac{(-2y)}{1+y^2}dy$$

Using How do I prove that $\arccos(x) + \arccos(-x)=\pi$ when $x \in [-1,1]$?,

$$I_1=\int_0^a\dfrac{y^4}{1-y^4}\left(\pi-\cos^{-1}\dfrac{2y}{1+y^2}\right)dy=\pi\int_0^a\dfrac{y^4}{1-y^4}dy-I_2$$

Hope you can take it from here!

1

We will integrate by parts to get rid of the arccos. The remaining integral will be trivial by symmetry. Observe that (at least for $0 < x < 1$) $$ \partial_x \cos^{-1} \left( \frac{2x}{1+x^2}\right) = \frac{2(1+x^2) - (2x)(2x)}{1+x^2} \frac{-1}{\sqrt{1 - \left(\frac{2x}{1+x^2} \right)^2}} = \frac{-2}{1+x^2}. $$ Also, $$ \frac{x^4}{1-x^4} = -1 + \frac{1}{2} \left[\frac{1}{1+x^2} + \frac{1}{1-x^2} \right]. $$ Integrating by parts now yields $$ \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} dx \frac{x^{4}}{1-x^{4}}\cos^{-1}\left(\frac{2x}{1+x^{2}}\right) = \left( -x + \frac{1}{2} \tan^{-1} x + \frac{1}{2}\tanh^{-1} x \right) \cos^{-1}\left(\frac{2x}{1+x^{2}}\right) \left. \right\lvert _{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} - \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} dx \left( -x + \frac{1}{2} \tan^{-1} x + \frac{1}{2} \tanh^{-1} x \right) \frac{-2}{1+x^2} \\= \pi \left[\frac{\pi}{12} - \frac{1}{\sqrt 3} + \frac{1}{4} \log \left(\frac{\sqrt 3 + 1}{\sqrt 3 - 1} \right) \right], $$ because the integrand is odd. I fixed a calculation error in my result (a factor 3).

$2^{nd}$ solution

$$I=\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}}\frac{x^{4}}{1-x^{4}}\cos^{-1}\left(\frac{2x}{1+x^{2}}\right)dx=\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}}\frac{x^{4}}{1-x^{4}}\cos^{-1}\left(\frac{-2x}{1+x^{2}}\right)dx=\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}}\frac{x^{4}}{1-x^{4}}\left(\pi-\cos^{-1}\left(\frac{2x}{1+x^{2}}\right)\right)dx$$ $$\Rightarrow I=\frac{\pi}{2}\int_{-1/\sqrt{3}}^{1/\sqrt{3}}\frac{x^4}{1-x^4}\,dx=\frac{\pi}{2}\int_{-1/\sqrt{3}}^{1/\sqrt{3}}\left(-1+\frac{1}{2(1+x^2)}+\frac{1}{2(1-x^2)}\right)\,dx$$ $$\Rightarrow I=-\frac{2}{\sqrt{3}}+\frac{\pi}{6}+\frac{1}{2}\ln\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)$$

Martin.s
  • 1
  • 1
  • 22
  • 1
    A $3^{\rm rd}$ solution: recover the integral of $\frac{x^4}{1-x^4}$ by recognizing $\arccos\frac{2x}{1+x^2}=\frac\pi2-2\arctan x$ when $x\in[-1,1]$. – user170231 Feb 18 '24 at 21:44