So I got stuck at that point with my induction:
$$1 + \frac{1}{\sqrt[3]{2}} + ... + \frac{1}{\sqrt[3]{n}} + \frac{1}{\sqrt[3]{n+1}} < \frac{3}{2}\sqrt[3]{(n+1)^2}$$
Then, trying to separate elements on the right hand side I got:
$$1 + \frac{1}{\sqrt[3]{2}} + ... + \frac{1}{\sqrt[3]{n}} + \frac{1}{\sqrt[3]{n+1}} < \frac{3}{2}\sqrt[3]{n^2(1 + \frac{2}{n} + \frac{1}{n^2})}$$
$$1 + \frac{1}{\sqrt[3]{2}} + ... + \frac{1}{\sqrt[3]{n}} + \frac{1}{\sqrt[3]{n+1}} < \frac{3}{2}\sqrt[3]{n^2}\sqrt[3]{(1 + \frac{2}{n} + \frac{1}{n^2})}$$
And now I see that the growth of values on the right hand side associated with changes of that ($\sqrt[3]{(1 + \frac{2}{n} + \frac{1}{n^2})}$) part is the smallest when that ($\frac{1}{\sqrt[3]{n}}$) part is the smallest and it is allways bigger than 1. So I know that:
$$1 + \frac{1}{\sqrt[3]{2}} + ... + \frac{1}{\sqrt[3]{n}} + \frac{1}{\sqrt[3]{n+1}} < \sqrt[3]{(1 + \frac{2}{n} + \frac{1}{n^2})}<\frac{3}{2}\sqrt[3]{n^2}\sqrt[3]{(1 + \frac{2}{n} + \frac{1}{n^2})}$$
Now I see that:
- $ \frac{1}{\sqrt[3]{n+1}} $ is falling for all $ n \in \mathbb{N}$
- $\sqrt[3]{(1 + \frac{2}{n} + \frac{1}{n^2})}$ is growing for all $ n \in \mathbb{N}$
So I just check both valuse for n = 1 and I get accordingly:
- $ \frac{1}{\sqrt[3]{2}} < 1$
- $\sqrt[3]{4} > 1$
So, that is it. To make sure I can calculate:
- $\lim_{x \to +\infty} \frac{1}{\sqrt[3]{n+1}} = 0$
- $\lim_{x \to +\infty}\sqrt[3]{(1 + \frac{2}{n} + \frac{1}{n^2})} = \infty $