I have a query that arose regarding this exercise that I already tried. I have already proven that $L=\mathbb{Q}(\sqrt{2},\sqrt{3},\alpha)=\mathbb{Q}(\alpha)$ with $\alpha=\sqrt{(2+\sqrt{2})(3+\sqrt{3})}$
So given an element in $L$, I can consider this element as:
i) $a+b\alpha$ with $a,b\in\mathbb{Q}$ (here I consider $L=\mathbb{Q}(\alpha)$
ii) $a+b\alpha$ with $a,b\in \mathbb{Q}(\sqrt{2},\sqrt{3})$ (here I consider $\mathbb{Q}(\sqrt{2},\sqrt{3})(\alpha)$
that is, can I consider either of the two options according to my convenience?
I ask it because I am trying to prove that $\varphi:L\to L$ with $\varphi(\alpha)=\sqrt{(2-\sqrt{2})(3+\sqrt{3})}$ and $\varphi(q)=q$ for all $q\in\mathbb{Q}$ is a automorphism (i.e. $\varphi\in \text{Aut}(L/\mathbb{Q})$), and when taking an element in $L$ this question arose
auto-correction 1. The above should say that
i) $a_0+a_1\alpha+a_2\alpha^2+\cdots +\alpha_7 \alpha^7$ with $a_i\in\mathbb{Q}$ (here I consider $L=\mathbb{Q}(\alpha)$
ii) $a_0+a_1\alpha+a_2\alpha^2+\cdots +\alpha_7 \alpha^7$ with $\in \mathbb{Q}(\sqrt{2},\sqrt{3})$ (here I consider $\mathbb{Q}(\sqrt{2},\sqrt{3})(\alpha)$ Because $\left\{1,\alpha,\alpha^2,\ldots, \alpha^7\right\}$ is the basis of the extension
auto-correction 2. The above should say that
i) $a_0+a_1\alpha+a_2\alpha^2+\cdots +\alpha_7 \alpha^7$ with $a_i\in\mathbb{Q}$ (here I consider $L=\mathbb{Q}(\alpha)$
ii) $a_0+a_1\alpha$ with $a_i\in \mathbb{Q}(\sqrt{2},\sqrt{3})$ (here I consider $L=\mathbb{Q}(\sqrt{2},\sqrt{3})(\alpha)$ Because $\left\{1,\alpha\right\}$ is the basis of the extension
Now, I undertands!