let $(X,A,\mu)$ a measurable space.$1<p, q, s<\infty$
a.Prove that if $f\in L^p$ and $g\in L^q$ such that $1/p+1/q=1/s$ then $fg\in L^s$ and $\|fg\|_s\leq \|f\|_p\|g\|_q$.
b.Prove that if $f\in L^p$ , $g\in L^q$ and $h\in L^s$ such that $1/p+1/q+1/s=1$ then $fgh\in L^1(\mu)$ and $\|fgh\|_1\leq \|f\|_p\|g\|_q\|h\|_s$
My trial:
a. $\|fg\|_s= (\int_X|fg|^s)^{1/s}=(\int_X|fg|^s)^{1/p+1/q}= (\int_X |fg|^s)^{1/p} (\int_X |fg|^s)^{1/q}\leq$ (p,q>s) $(\int_X |fg|^p)^{1/p} (\int_X |fg|^q)^{1/q}= \|f\|_p\|g\|_q$ and since $\|f\|_p , \|g\|_q < \infty$ then $\|fg\|_s$ is finite too.so $fg \in L^s$
b. Denote $1/p+1/q=1/p'$ so by part a we get $fg\in L^{p'}$ and: $\|fg\|_{p'} \leq \|f\|_p \|g\|_q$, then we have $1/p'+1/s=1$ therefore by holder ineq1uality we get $\|fgh\|_1\leq \|fg\|_{p'} \|h\|_s \leq \|f\|_p\|g\|_q\|h\|_s$
Is what I solved right? Glad to her any notifications.