How can I show that for positive reals
$$ \frac{a}{b}\leq \frac{c}{d}, $$ that $$ \frac{a}{b}\leq\frac{a+c}{b+d}\leq\frac{c}{d}. $$
Thanks in advance.
How can I show that for positive reals
$$ \frac{a}{b}\leq \frac{c}{d}, $$ that $$ \frac{a}{b}\leq\frac{a+c}{b+d}\leq\frac{c}{d}. $$
Thanks in advance.
Hint:
$$\dfrac{a+c}{b+d}-\dfrac ab=\dfrac{ab+bc-(ab+ad)}{b(b+d)}=\dfrac{bd\left(\dfrac cd-\dfrac ab\right)}{b(b+d)}$$ which will be $\ge0$ if $\dfrac d{b+d}\ge0$