Notice
$$\begin{align}\frac{1}{\cos^2\frac{\theta}{2}}
&= \frac{2}{1+\cos\theta}
= 2\frac{1 - \cos\theta}{1-\cos^2\theta}
= \frac{4 - 2(1+\cos\theta)}{1-\cos^2\theta}\\
&= \frac{4}{\sin^2\theta} - \frac{2}{1-\cos\theta}
= \frac{4}{\sin^2\theta} - \frac{1}{\sin^2\frac{\theta}{2}}
\end{align}
$$
We have
$$\begin{align}
\sum_{n=1}^p \frac{1}{4^n\cos^2\frac{\pi}{2^{n+2}}}
&= \sum_{n=1}^p \left[
\frac{1}{4^{n-1}\sin^2\frac{\pi}{2^{n+1}}} -
\frac{1}{4^n\sin^2\frac{\pi}{2^{n+2}}}
\right]\\
&=\frac{1}{4^{1-1}\sin^2\frac{\pi}{2^{1+1}}} - \frac{1}{4^p\sin^2\frac{\pi}{2^{p+2}}}\\
&= \frac{1}{\sin^2\frac{\pi}{4}} - \frac{\frac{16}{\pi^2}}{\left(\frac{2^{p+2}}{\pi}\sin\frac{\pi}{2^{p+2}}\right)^2}
\end{align}
$$
Since $\lim\limits_{x\to 0} \frac{\sin x}{x} = 1$, the denominator in last term tends to $1$ as $p \to \infty$, As a result,
$$\sum_{n=1}^\infty \frac{1}{4^n\cos^2\frac{\pi}{2^{n+2}}}
= \lim_{p\to\infty}
\sum_{n=1}^p \frac{1}{4^n\cos^2\frac{\pi}{2^{n+2}}}
= 2 - \frac{16}{\pi^2}
$$