2

I am struggling with this example. This is a new topic for me. I would really appreciate some hints to understand it. I need part a) and b) to conclude the excercise.

I was thinking about Fermat, Euler or Wilson theorems but I am not sure if it is correct, of course I can use properties of congruences in number theory.

Part a): show that $50^{44}+30! \cdot 44^{50}-24 $ is divisible by $31$
Part b) : Conclude that $ (50^{44}+30!\cdot 44^{50})^{\varphi(31)} \equiv 1 \pmod{ 31}$

Neat Math
  • 4,790

5 Answers5

1

Here's a handful of hints:

$50^{44} = 2^{44}5^{88}$

$44^{50} = 2^{100}11^{50}$

$2^5\equiv 1 \pmod{31}$

$5^3 \equiv 1 \pmod{31}$

$11^2 \equiv -3 \pmod{31}$

1

\begin{align} 50^{44} + 30! \cdot 44^{50} &\equiv 50^{44} - 44^{50} \pmod{31}, \text{ By Wilson's Theorem } \\ &\equiv 2^{44} \cdot 5^{88} - 2^{100}\cdot 11^{50} \pmod{31} \\ &\equiv 2^{14}\cdot 5^{28} - 2^{10} \cdot 11^{20} \pmod{31}\text{, By Fermat's little Theorem } \\ &\equiv 2^{4} \cdot 5 - (-3)^{10} \pmod{31}, \\ &\equiv 2^4 \cdot 5 - 3^{10} \pmod{31} \\ &\equiv 2^4 \cdot 5 - 3^{3\times 3}\cdot 3 \pmod{31} \\ &\equiv 2^4 \cdot 5 - (-4)^3 \cdot 3 \pmod{31} \\ &\equiv 2^4 (5+12) \pmod{31} \\ &\equiv 2^4 (2^4+1) \pmod{31} \\ &\equiv2^8 + 2^4 \pmod{31} \\ &\equiv 2^3 + 2^4 \pmod{31} \\ &\equiv 24 \pmod{31} \end{align}

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149
1

Notice we can use Fermat's little theorem to reduce the exponents using mod order reduction, based on these values: $\ \color{#0a0}{2^5\equiv 1},\,$ $\, \color{#c00}{5^3\equiv 1},\,$ $\, \color{#90f}{11^3}\equiv 11(-3) \equiv \color{#90f}{-2},\,$ yielding

$$\begin{align} \bmod 31\!:\quad\ & 50^{44}\!+30! \cdot 44^{50}\\[,2em] \equiv\ & 50^{14}\ \ \ \, -\,\ \ \ 44^{20}\qquad\ \ {\rm by}\ \ 30!\equiv -1\,\ {\rm by\ Wilson}\\[,2em] \equiv\ &\color{#0a0}{2^{14}} \cdot \color{#c00}{5^{28}}-\color{#0a0}{2^{40}} \cdot \color{#90f}{11^{20}}\\[.3em] \equiv\ &\ \ \ \ \ \frac{\color{#c00}{5}}{\color{#0a0}2}\,\ -\,\ \color{#0a0}1\cdot \color{#90f}{\frac{(-2)^{7}}{11} \ \ \ \text{by (*) below}}\\[.3em] \equiv\ &\ \ \ \ \frac{\color{}{36}}{2}\ \ \ \ \ +\ \ \ \ \ \frac{\color{#90f}{2^{2}}}{11}\quad\ \ {\rm by}\ \ \color{#0a0}{2^5\equiv 1}\\[.3em] \equiv\ &\ \ \ \ 18\ \ +\ \ \frac{\color{}{4+62}}{11}\\ \equiv\ &\ \ \ \ 24 \end{align}\!\!\!$$

$\color{#90f}{\text{(*)}}\,$ we used $\ \color{#90f}{11^3 = -2}\ \, \smash{\overset{\Large x^{7}\!}\Longrightarrow}\ 11^{21} \equiv (-2)^7\!\Rightarrow \color{#90f}{11^{20}\equiv (-2)^7/11},\ $ then in the next two lines we twiddle the fraction numerators by adding (or subtracting) small multiples of the modulus so to make the quotient exact.

Part b) is just FLT again.

Check here to see how modular fractions work.

Bill Dubuque
  • 272,048
Neat Math
  • 4,790
  • 1
    Good use of modular fractions (+1). For beginners it may help to highlight where you use the congruences in the 2nd line (e.g. associate them by color). Maybe that explains the downvote (or maybe it's a user who doesn't like modular fractions - alas there are many). – Bill Dubuque Dec 06 '20 at 09:16
  • @BillDubuque Thank you for your advice! – Neat Math Dec 06 '20 at 14:29
  • Thank you Guys. I really appreciate your help to understand it in a better way. These are my first steps in modular aritmetic. I ll do my best to understand it. – Charlie Van Basten Øydne Dec 06 '20 at 14:39
  • @Charlie and Neat Math. I added some color to help show the logic. Of course Neat is free to rvert or edit it to their preference. – Bill Dubuque Dec 06 '20 at 15:11
  • @BillDubuque Thanks Bill. This is beautiful. – Neat Math Dec 06 '20 at 15:12
  • @NeatMath I'm sure you can improve it but that's all the spare time I have at the moment. – Bill Dubuque Dec 06 '20 at 15:18
1

Considering that

$\quad 2^5 \equiv 1 \pmod{31} \land 50 \equiv 19 \pmod{31} \land 44 \equiv 13 \pmod{31}$

we calculate (looking for 'presentation loop closure'),

$\quad 13^2 \equiv 2^1 \cdot 7^1 \pmod{31}$

$\quad 19^2 \equiv 2^2 \cdot 5^1 \pmod{31}$

$\quad 7^2 \equiv 2^1 \cdot 3^2 \pmod{31}$

$\quad 5^3 \equiv 1 \pmod{31}$

$\quad 3^5 \equiv 2^1 \cdot 13^1 \pmod{31}$

and write

\begin{align} 50^{44} + 30! \cdot 44^{50} &\equiv 19^{44} - 13^{50} \pmod{31}, \text{ By Wilson's Theorem } \\ &\equiv 2^{44} \cdot 5^{22} - 2^{25}\cdot 7^{25} \pmod{31} \\ &\equiv 2^{4} \cdot 5^{1} - 2^{12} \cdot 3^{24} \cdot 7 \pmod{31} \\ &\equiv 2^{4} \cdot 5^{1} - 2^{12} \cdot 2^{4} \cdot 13^{4} \cdot 3^4 \cdot 7 \pmod{31} \\ &\equiv 2^{4} \cdot 5^{1} - 2^{12} \cdot 2^{4} \cdot 2^2 \cdot 7^2 \cdot 3^4 \cdot 7 \pmod{31} \\ &\equiv 2^{4} \cdot 5^{1} - 2^{12} \cdot 2^{4} \cdot 2^2 \cdot 2 \cdot 3^2 \cdot 3^4 \cdot 7 \pmod{31} \\ &\equiv 2^{4} \cdot 5^{1} - 2^{4} \cdot 3^6 \cdot 7 \pmod{31} \\ &\equiv 2^{4} \cdot 5^{1} - 2^{4} \cdot 2^1 \cdot 13^1 \cdot 3 \cdot 7 \pmod{31} \\ &\equiv 2^{4} \cdot 5^{1} - 3 \cdot 7 \cdot 13 \pmod{31} \\ &\equiv 80 + 130 \pmod{31} \\ &\equiv 24 \pmod{31} \end{align}

CopyPasteIt
  • 11,366
1

This answer is Community wiki and takes a 'deep dive' into algorithmic solution design.


The 'elemental' exponent reducing identity in ${\displaystyle (\mathbb {Z} /31\mathbb {Z} )^{\times}}$ is

$\quad \large 2^1\cdot3^1\cdot5^1 \equiv 2^0\cdot3^0\cdot5^0 \cdot (-1) \pmod{31}$

and this can be expanded into a 'closed exponent reducing presentation system',

$\quad \large 2^4 \equiv 3^1\cdot5^1\cdot (-1) \pmod{31}$
$\quad \large 3^3 \equiv 2^2 \cdot (-1) \pmod{31}$
$\quad \large 5^2 \equiv 2^1\cdot3^1\cdot (-1) \pmod{31}$

Part 1: Calculate $50^{44} \pmod{31}$

Since

$\quad 50 \equiv 19 \pmod{31}$

$\quad 19 \equiv 2^2 \cdot 3 \cdot (-1) \pmod{31}$

our 'not too smart' algorithm can be applied:

\begin{align} 50^{44} &\equiv 19^{44} \pmod{31} \\ &\equiv 2^{88} \cdot 3^{44} \cdot 5^0 \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{66} \cdot 5^{22} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{44} \cdot 3^{0} \cdot 5^{22} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{11} \cdot 5^{33} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{11} \cdot 5^{33} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{16} \cdot 3^{27} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{34} \cdot 3^{0} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{2} \cdot 3^{8} \cdot 5^{9} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{6} \cdot 3^{12} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{14} \cdot 3^{0} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{4} \cdot 3^{5} \cdot 5^{0} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{6} \cdot 3^{2} \cdot 5^{0} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{2} \cdot 3^{3} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{4} \cdot 3^{0} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{1} \cdot 5^{2} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{1} \cdot 3^{2} \cdot 5^{0} \cdot (-1)^{0} \pmod{31} \\ &\equiv 18 \pmod{31} \end{align}

Part 2: Calculate $44^{50} \pmod{31}$

Since

$\quad 44 \equiv 13 \pmod{31}$

and

$\quad 13 \equiv 2 \cdot 3^2 \cdot (-1) \pmod{31}$

our 'not too smart' algorithm can be applied:

\begin{align} 44^{50} &\equiv 13^{50} \pmod{31} \\ &\equiv 2^{50} \cdot 3^{100} \cdot 5^0 \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{116} \cdot 3^{1} \cdot 5^{0} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{30} \cdot 5^{29} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{20} \cdot 3^{0} \cdot 5^{29} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{34} \cdot 3^{14} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{2} \cdot 3^{22} \cdot 5^{9} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{16} \cdot 3^{1} \cdot 5^{9} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{5} \cdot 5^{13} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{6} \cdot 3^{11} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{12} \cdot 3^{2} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{5} \cdot 5^{4} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{2} \cdot 3^{2} \cdot 5^{4} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{4} \cdot 3^{4} \cdot 5^{0} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{0} \cdot 3^{5} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\ &\equiv 2^{2} \cdot 3^{2} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\ &\equiv 2^{1} \cdot 3^{1} \cdot 5^{0} \cdot (-1)^{1} \pmod{31} \\ &\equiv 25 \pmod{31} \end{align}

CopyPasteIt
  • 11,366