This answer is Community wiki and takes a 'deep dive' into algorithmic solution design.
The 'elemental' exponent reducing identity in ${\displaystyle (\mathbb {Z} /31\mathbb {Z} )^{\times}}$ is
$\quad \large 2^1\cdot3^1\cdot5^1 \equiv 2^0\cdot3^0\cdot5^0 \cdot (-1) \pmod{31}$
and this can be expanded into a 'closed exponent reducing presentation system',
$\quad \large 2^4 \equiv 3^1\cdot5^1\cdot (-1) \pmod{31}$
$\quad \large 3^3 \equiv 2^2 \cdot (-1) \pmod{31}$
$\quad \large 5^2 \equiv 2^1\cdot3^1\cdot (-1) \pmod{31}$
Part 1: Calculate $50^{44} \pmod{31}$
Since
$\quad 50 \equiv 19 \pmod{31}$
$\quad 19 \equiv 2^2 \cdot 3 \cdot (-1) \pmod{31}$
our 'not too smart' algorithm can be applied:
\begin{align}
50^{44} &\equiv 19^{44} \pmod{31} \\
&\equiv 2^{88} \cdot 3^{44} \cdot 5^0 \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{66} \cdot 5^{22} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{44} \cdot 3^{0} \cdot 5^{22} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{11} \cdot 5^{33} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{11} \cdot 5^{33} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{16} \cdot 3^{27} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{34} \cdot 3^{0} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{2} \cdot 3^{8} \cdot 5^{9} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{6} \cdot 3^{12} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{14} \cdot 3^{0} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{4} \cdot 3^{5} \cdot 5^{0} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{6} \cdot 3^{2} \cdot 5^{0} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{2} \cdot 3^{3} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{4} \cdot 3^{0} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{1} \cdot 5^{2} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{1} \cdot 3^{2} \cdot 5^{0} \cdot (-1)^{0} \pmod{31} \\
&\equiv 18 \pmod{31}
\end{align}
Part 2: Calculate $44^{50} \pmod{31}$
Since
$\quad 44 \equiv 13 \pmod{31}$
and
$\quad 13 \equiv 2 \cdot 3^2 \cdot (-1) \pmod{31}$
our 'not too smart' algorithm can be applied:
\begin{align}
44^{50} &\equiv 13^{50} \pmod{31} \\
&\equiv 2^{50} \cdot 3^{100} \cdot 5^0 \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{116} \cdot 3^{1} \cdot 5^{0} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{30} \cdot 5^{29} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{20} \cdot 3^{0} \cdot 5^{29} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{34} \cdot 3^{14} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{2} \cdot 3^{22} \cdot 5^{9} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{16} \cdot 3^{1} \cdot 5^{9} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{5} \cdot 5^{13} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{6} \cdot 3^{11} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{12} \cdot 3^{2} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{5} \cdot 5^{4} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{2} \cdot 3^{2} \cdot 5^{4} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{4} \cdot 3^{4} \cdot 5^{0} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{0} \cdot 3^{5} \cdot 5^{1} \cdot (-1)^{1} \pmod{31} \\
&\equiv 2^{2} \cdot 3^{2} \cdot 5^{1} \cdot (-1)^{0} \pmod{31} \\
&\equiv 2^{1} \cdot 3^{1} \cdot 5^{0} \cdot (-1)^{1} \pmod{31} \\
&\equiv 25 \pmod{31}
\end{align}