If you use zero-based indexing, so that the root is position $0$, then the last node in level $\ell$ of the tree has index $\sum_{i=1}^\ell d^i=\frac{d(d^\ell-1)}{d-1}$. Thus, node $k$ is in level $\ell$ iff
$$\frac{d}{d-1}(d^{\ell-1}-1)<k\le\frac{d}{d-1}(d^\ell-1)\;,$$
or
$$d^{\ell-1}<k\left(1-\frac1d\right)+1\le d^\ell\;,$$
i.e.,
$$\ell=\left\lceil\log_d\left(k\left(1-\frac1d\right)+1\right)\right\rceil\;.$$
Let
$$\ell(k)=\left\lceil\log_d\left(k\left(1-\frac1d\right)+1\right)\right\rceil\;,$$
the level of node $k$. Node $k$ has
$$k-\frac{d(d^{\ell-1}-1)}{d-1}-1$$
predecessors in level $\ell(k)$, each of which has $d$ offspring, so its $d$ offspring have indices from
$$\frac{d(d^\ell-1)}{d-1}+d\left(k-\frac{d(d^{\ell-1}-1)}{d-1}-1\right)+1=dk+1$$
through $dk+d=d(k+1)$.
Now assume that $k>0$, and node $m$ is the parent of node $k$. Then
$$dm+1\le k\le d(m+1)\;,$$
so
$$m+\frac1d\le\frac{k}d\le m+1\;,$$
and therefore $$\left\lceil\frac{k}d\right\rceil=m+1\;,$$
i.e.,
$$m=\left\lceil\frac{k}d\right\rceil-1\;.$$