It's trivial using the method of simpler multiples. Let $\,g = x^3\!-\!x\!-\!1.\,$ Note $\,f = x^2\!+\!x\!+\!1\,$ has simpler multiple $\,\color{#0a0}{h = x^3\!-\!1}\,$ so $\, r\:\!f + s\,g = 1\iff \bmod f\!:\ s\,g\equiv 1\iff s\equiv 1/g,\,$ which we compute first modulo the simpler multiple $\,\color{#0a0}{h},\,$ i.e. $\,1/g \bmod f = (1/g \bmod \color{#0a0}{x^3\!-\!1})\bmod f,\,$ i.e.
$$\bmod \color{#c00}{x^2\!+\!x}\!+\!1\!:\,\ \dfrac{1}{g}\,\equiv\, \dfrac{1}{\color{#0a0}{x^3\!-\!1}\!-\!x\bmod \color{#0a0}{x^3\!-\!1}}\,\equiv\, \dfrac{-(\color{#c00}{x^2+x})}{-x}\,\equiv\, x+1\qquad $$
Remark $ $ The method in Deepak's answer is essentially the same but instead replaces arithmetic $\bmod f\,$ by equivalent calculations using the roots of $\,f.$