I need to evaluate the sum given by:
$$\displaystyle \sum_{k=1}^\infty \left( \frac{1}{6k+1}+\frac{1}{6k+3}+\frac{1}{6k+5}-\frac{1}{8k}-\frac{1}{8k+2}-\frac{1}{8k+4}-\frac{1}{8k+6} \right)$$
I know that:
for $k = 1$ I get: $\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\frac{1}{8}-\frac{1}{10}-\frac{1}{12}\mathbf{-\frac{1}{14}}$
for $k = 2$ I get: $\frac{1}{13}+\frac{1}{15}+\frac{1}{17}-\frac{1}{16}-\frac{1}{18} \mathbf{-\frac{1}{20}-\frac{1}{22}}$
for $k = 3$ I get: $\frac{1}{19}+\frac{1}{21}+\frac{1}{23}-\frac{1}{24} \mathbf{-\frac{1}{26}-\frac{1}{28}-\frac{1}{30}}$
for $k = 4$ I get: $\frac{1}{25}+\frac{1}{27}+\frac{1}{29} \mathbf{ -\frac{1}{32}-\frac{1}{34}-\frac{1}{36}-\frac{1}{38}}$
I can write that sum for $k = 4$ as: $$ \frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}+\frac{1}{13} -\frac{1}{14}+\frac{1}{15}-\frac{1}{16}+\frac{1}{17}-\frac{1}{18}+\frac{1}{19}-\frac{1}{20}+\frac{1}{21}-\frac{1}{22}+\frac{1}{23}-\frac{1}{24}+\frac{1}{25}-\frac{1}{26}+\frac{1}{27}-\frac{1}{28}+\frac{1}{29} -\frac{1}{30} \mathbf{ -\frac{1}{32}-\frac{1}{34}-\frac{1}{36}-\frac{1}{38}}$$
And I can write that sum for $k = 8$ as: $$ \frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}+\frac{1}{13} -\frac{1}{14}+\frac{1}{15}-\frac{1}{16}+\frac{1}{17}-\frac{1}{18}+\frac{1}{19}-\frac{1}{20}+\frac{1}{21}-\frac{1}{22}+\frac{1}{23}-\frac{1}{24}+\frac{1}{25}-\frac{1}{26}+\frac{1}{27}-\frac{1}{28}+\frac{1}{29} -\frac{1}{30} + \frac{1}{31}-\frac{1}{32}+\frac{1}{33}-\frac{1}{43}+\frac{1}{35}-\frac{1}{36}+\frac{1}{37} -\frac{1}{38}+\frac{1}{39}-\frac{1}{40}+\frac{1}{41}-\frac{1}{42}+\frac{1}{43}-\frac{1}{44}+\frac{1}{45}-\frac{1}{46}+\frac{1}{47}-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}+\frac{1}{51}-\frac{1}{52}+\frac{1}{53} -\frac{1}{54} \mathbf{ -\frac{1}{56}-\frac{1}{58} -\frac{1}{60}-\frac{1}{62}-\frac{1}{64}-\frac{1}{66}-\frac{1}{68} -\frac{1}{70}}$$
I see that for every k I get $1$ extra negative element at the end of the sum. I had an idea to rewrite it that way: $$\displaystyle \sum_{k=1}^\infty \left( \frac{1}{6k+1}+\frac{1}{6k+3}+\frac{1}{6k+5}-\frac{1}{8k}-\frac{1}{8k+2}-\frac{1}{8k+4}-\frac{1}{8k+6} \right) = $$ $$\displaystyle \sum_{k=1}^\infty \left( (-1)^{n+1}\frac{1}{n} \right) -1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6} - \displaystyle \sum_{k=1}^\infty X$$
That way I know that the first sum converges (Dirichlet), but still I don't know how to evaluate that expression. I don't know how to evaluate $\displaystyle \sum_{k=1}^\infty ( (-1)^{n+1}\frac{1}{n}$ ) and I don't know how to include those negative elements in my sum (those are marked as X).