Euclid's lemma: If $p\mid ab$, then $p\mid a$ or $p\mid b$.
Prove: If $p$ is prime and $p \mid a_1a_2\dots a_n$, then $p \mid a_i$ for some $i = 1, 2, \dots, n$.
Proof by Induction:
P(1): From $p\in\mathbb{P}$ and $p\mid a_1$ it follows that: \begin{equation*} p \mid a_i, \end{equation*} for $i = 1$. P(1) is true.
P(2): If $p\in\mathbb{P}$ and $p\mid a_1a_2$ it follows from the lemma that if $p \nmid a_1$, then: \begin{equation*} p \mid a_2, \end{equation*} so \begin{equation*} p \mid a_i \end{equation*} for some $i = 1, 2$.
On the other hand, if $p\mid a_1$, then the same conclusion is reached. P(2) is true.
Now assume P(k) inductively: \begin{equation*} p \mid a_1a_2\dots a_k \rightarrow p \mid a_i \end{equation*} for some $i = 1, 2, \dots, k$.
P(k+1) is also true because from $p \mid (a_1a_2\dots a_k)a_{k+1}$ two cases arise:
Case I: $p\nmid a_1\dots a_k$.
Using Euclid's lemma it follows that if $p\nmid a_1\dots a_k$, then: \begin{equation*} p\mid a_{k+1} \end{equation*} and thus: \begin{equation*} p\mid a_i, \end{equation*} for some $i = 1, 2, \dots, k+1$.
Case II: $p\mid a_1\dots a_k$.
By the inductive hypothesis, the conclusion may be reached: \begin{equation*} p \mid a_i, \end{equation*} for some $i = 1, 2, \dots,k, k+1$.