Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two sequences of $\color{red}{\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty,\infty\}}$. Suppose that the sum $a_n+b_n$ exists for all $n\in\mathbb{N}$. Prove that if the sum $\inf_{n\in\mathbb{N}}\sup_{k\geq n}a_k+\inf_{n\in\mathbb{N}}\sup_{k\geq n}b_k$ exists, then
$$\inf_{n\in\mathbb{N}}\sup_{k\geq n}(a_k+b_k)\leq \inf_{n\in\mathbb{N}}\sup_{k\geq n}a_k+\inf_{n\in\mathbb{N}}\sup_{k\geq n}b_k$$
I want to prove the above inequality without using the notion of limits! Remember that the following operations ARE NOT defined: $(\infty)-(\infty)$, $(-\infty)+(\infty )$, $(\infty )+(-\infty )$ and $(-\infty)-(-\infty )$.
The order relation $\leq $ is defined in the following way: given any $x,y\in\overline{\mathbb{R}}$ we say that $x\leq y$ if, and only if, at least one of the following propositions is true:
- If $x,y\in\mathbb{R}$, then $x\leq y$ (here $\leq$ is the usual order of the real numbers)
- $y=\infty$
- $x=-\infty$
I tried to use the inequalities below, but I couldn't solve that problem.
- If the sum $\sup_{k\geq n}a_k+\sup_{k\geq n}b_k$ exists, then $\sup_{k\geq n}(a_k+b_k)\leq \sup_{k\geq n}a_k+\sup_{k\geq n}b_k$ for all $n\in\mathbb{N}$
- If the sum $\inf_{n\in\mathbb{N}}a_n+\inf_{n\in\mathbb{N}}b_n$ exists, then $\inf_{n\in\mathbb{N}}a_n+\inf_{n\in\mathbb{N}}b_n\leq \inf_{n\in\mathbb{N}}(a_n+b_n)$
Thank you for your attention!