We can give a sound meaning to a sum with continuous (non-integral) bounds by the concept of Indefinite Summation.
This states that
$$
\eqalign{
& f(x) = \Delta F(x) = F(x + 1) - F(x)\quad \Rightarrow \cr
& \Rightarrow \quad F(x) = \Delta ^{\left( { - 1} \right)} f(x) = \sum\nolimits_x {f(x)}
= \sum\nolimits_{k = 0}^x {f(x)} + c\quad \Rightarrow \cr
& \Rightarrow \quad \sum\limits_{k = a}^b {f(k)} = \sum\nolimits_{k = a}^{b + 1} {f(k)}
= F(b + 1) - F(a) \cr}
$$
which means that, if there is a function $F(x)$ such that $F(x + 1) - F(x)=f(x)$, over $x \in \mathbb R$ or even $x \in \mathbb C$, then makes sense to put
that the sum of $f(x)$ between any real or complex bounds $a,b$ is $F(b)-F(a)$.
Which is a concept similar to the integral as anti-derivative.
Once you converted your sum into $F(b+1)-F(a)$, you can derivate wrt $b$ (or also wrt $a$).
Only to note that the traditional sum $\sum\limits_{k = a}^b$ converts in the new acception to $\sum\nolimits_{k = a}^{b + 1} $,
through the following steps
$$
\sum\limits_{k = a}^b {f(x)} = \sum\limits_{a\, \le k\, \le \,b} {f(x)}
= \sum\limits_{a\, \le k\, < \,b + 1} {f(x)} \to \sum\nolimits_{k = 0}^{b + 1} {f(x)}
$$
Example:
$$
\eqalign{
& \left( \matrix{ n + 1 \cr 3 \cr} \right)
= \left( \matrix{ n \cr 3 \cr} \right) + \left( \matrix{ n \cr 2 \cr} \right)
\Rightarrow \Delta \left( \matrix{ n \cr 3 \cr} \right)
= \left( \matrix{ n + 1 \cr 3 \cr} \right) - \left( \matrix{n \cr 3 \cr} \right)
= \left( \matrix{n \cr 2 \cr} \right) = {{n\left( {n - 1} \right)} \over 2} \cr
& \sum\limits_{k = 4}^7 {k\left( {k - 1} \right)}
= \sum\nolimits_{k = 4}^{7 + 1} {k\left( {k - 1} \right)}
= 2\left( {\left( \matrix{ 7 + 1 \cr 3 \cr} \right) - \left( \matrix{ 4 \cr 3 \cr} \right)} \right) = 104 \cr
& \sum\limits_{k = a}^b {k\left( {k - 1} \right)}
= 2\left( {\left( \matrix{ b + 1 \cr 3 \cr} \right) - \left( \matrix{ a \cr 3 \cr} \right)} \right) \cr}
$$