Evaluate
$$\cos 10^{\circ}+\cot 23^{\circ}-\sin 12^{\circ} + cos 12^{\circ}$$
Can you help me please!
Evaluate
$$\cos 10^{\circ}+\cot 23^{\circ}-\sin 12^{\circ} + cos 12^{\circ}$$
Can you help me please!
Per the identity $4\cos^3t-3\cos t=\cos 3t$, verify that $\cos20$, $-\cos40$ and $-\cos80$ are the three roots of $$4x^3-3x=\frac12 $$ Square to get $64x^6-96x^4+36x^2-1=0$, or the cubic equation for $\frac1{x^2}$
$$\frac1{x^6}-\frac{36}{x^4} +\frac{96}{x^2} -64=0$$
Thus $$ \csc^2 10+\csc^2 50+\csc^2 70= \frac1{\cos^280}+ \frac1{\cos^240}+ \frac1{\cos^220}=36 $$