Find the elliptic integral $$\int\limits^1_0 \frac{K(k)}{\sqrt{1-k^2}}\,\mathrm{d}k,$$ where $$K(k) = \int\limits_{0}^{1} \frac {\mathrm dt}{\sqrt{(1 - t^2)(1 - k^2t^2)}}=\int\limits_{0}^{\pi/2} \frac{\text{d}\vartheta}{\sqrt{1 - k^2 \sin^2\vartheta}}$$
My approach: Let $k=\dfrac{\sin\theta}{\sin\phi}$
Now after some calculation, I have reached the following: $$\int\limits_{0}^{\pi/2}\int\limits_{0}^{\phi}\dfrac{d\theta d\phi}{\sqrt{\sin^2\phi-\sin^2\theta}}$$ Now how to proceed from this point..please give some idea/hint.
Definition of elliptic integral: https://en.wikipedia.org/wiki/Elliptic_integral