Let $ n\geq 2 $.
It is possible to prove that $ \mathcal{B}=\left(1,X,\cdots, X\left(X-1\right)\cdots\left(X-n+1\right)\right) $ is a basis of $ \mathbb{R}_{n}\left[X\right] $. To do so, we just need to prove the linear independence of $ 1 $, $ X $, $\cdots $, $X-n+1 $.
Anyway, that means there exists an unique $ \left(n+1\right)-$tuple $ \left(\alpha_{n,k}\right)_{0\leq k\leq n} $ such that : $$ X^{n}=\sum_{k=0}^{n}{\alpha_{n,k}X\cdots \left(X-k+1\right)} $$
Therefore if $ n,k\in\mathbb{N} $, we have for all $ i\in\mathbb{N} $ : $$ i^{k}=\sum_{j=0}^{k}{\alpha_{k,j}i\cdots\left(i-j+1\right)} $$
Thus : \begin{aligned}\sum_{i=0}^{n}{i^{k}\binom{n}{i}}&=\sum_{i=0}^{n}{\sum_{j=0}^{k}{\alpha_{k,j}i\cdots\left(i-j+1\right)\binom{n}{i}}}\\ &=\sum_{j=0}^{k}{\alpha_{k,j}\sum_{i=j}^{n}{i\cdots\left(i-j+1\right)\binom{n}{i}}}\\ &=\sum_{j=0}^{k}{\alpha_{k,j}\sum_{i=j}^{n}{n\cdots\left(n-j+1\right)\binom{n-j}{i-j}}}\\ \sum_{i=0}^{n}{i^{k}\binom{n}{i}}&=\sum_{j=0}^{k}{\alpha_{k,j}n\cdots\left(n-j+1\right)2^{n-j}}\end{aligned}
The $ \left\lbrace\alpha_{k,j}\right\rbrace_{0\leq j\leq k} $ are easy to find in particular cases, calculating the sum should be easy using the previous result, after finding the $ \alpha_{k,j} $.
Their might be a recurrence relation between the $ \alpha_{k,j} $. Finding it will help us to generalise further.