Let $\boldsymbol{A}$ is a real symmetric matrix, $\boldsymbol{B}$ is a real antisymmetric matrix, $\boldsymbol{A}^2 = \boldsymbol{B}^2$, prove $\boldsymbol{A} = \boldsymbol{B} = \boldsymbol{0}$.
I tried the second-order matrix. Let $\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{bmatrix}$, $\boldsymbol{B} = \begin{bmatrix} b_{11} & b_{12} \\ {-b_{12}} & b_{22} \end{bmatrix}$, $a_{ij}, b_{ij} \in \mathbb{R}$.
\begin{align} \boldsymbol{A}^2 &= \begin{bmatrix} {a_{11}^2 + a_{12}^2} & {a_{11}a_{12} + a_{12}a_{22}} \\ {a_{11}a_{12} + a_{12}a_{22}} & {a_{12}^2 + a_{22}^2} \end{bmatrix} \\ \boldsymbol{B}^2 &= \begin{bmatrix} {b_{11}^2 - b_{12}^2} & {b_{11}b_{12} + b_{12}b_{22}} \\ {-b_{11}b_{12} - b_{12}b_{22}} & {-b_{12}^2 + b_{22}^2} \end{bmatrix} \end{align}
Because $\boldsymbol{A}^2 = \boldsymbol{B}^2$, I got \begin{align} a_{11}^2 + a_{12}^2 &= b_{11}^2 - b_{12}^2 \\ a_{11}a_{12} + a_{12}a_{22} &= b_{11}b_{12} + b_{12}b_{22} \\ a_{11}a_{12} + a_{12}a_{22} &= -b_{11}b_{12} - b_{12}b_{22} \\ a_{12}^2 + b_{22}^2 &= -b_{12}^2 + b_{22}^2 \end{align}
Hence, \begin{align} a_{11}a_{12}+a_{12}a_{22}=b_{11}b_{12}+b_{12}b_{22}=0 \end{align}
I lost my momentum here.