Cauchy-Schwarz says
$$
\begin{align}
\log\left(1+\frac1n\right)
&=\int_n^{n+1}\frac1x\,\mathrm{d}x\tag{1a}\\
&\le\left(\int_n^{n+1}\frac1{x^2}\,\mathrm{d}x\right)^{1/2}\left(\int_n^{n+1}1\,\mathrm{d}x\right)^{1/2}\tag{1b}\\
&=\frac1{\sqrt{n(n+1)}}\tag{1c}
\end{align}
$$
That is,
$$
\left(1+\frac1n\right)^{\sqrt{n(n+1)}}\le e\tag2
$$
For any $\epsilon\gt0$, if $n\ge\frac1{8\epsilon}+\frac\epsilon2-\frac12$, then
$$
\begin{align}
\left(n+\frac12-\epsilon\right)^2
&=n(n+1)+\overbrace{\frac14+\epsilon^2-2\left(n+\frac12\right)\epsilon}^{\le0}\tag{3a}\\
&\le n(n+1)\tag{3b}
\end{align}
$$
Therefore, putting together $(2)$ and $(3)$, we get that for $n\ge\frac1{8\epsilon}+\frac\epsilon2-\frac12$
$$
\left(1+\frac1n\right)^{n+\frac12-\epsilon}\le e\tag4
$$