On another site, someone asked about proving that
$$ \int_{0}^{1} \frac{\ln^{n}x}{(1-x)^{m}} \, dx = (-1)^{n+m-1} \frac{n!}{(m-1)!} \sum_{j=1}^{m-1} (-1)^{j} s (m-1,j) \zeta(n+1-j), \tag{1} $$
where $n, m \in \mathbb{N}$, $n \ge m$, $m \ge 2$, and $s(m-1,j)$ are the Stirling numbers of the first kind.
My attempt at proving $(1)$:
$$ \begin{align}\int_{0}^{1} \frac{\ln^{n}x}{(1-x)^{m}} \, dx &= \frac{1}{(m-1)!} \int_{0}^{1} \ln^{n} x \sum_{k=m-1}^{\infty} k(k-1) \cdots (k-m+2) \ x^{k-m+1} \ dx \\ &= \frac{1}{(m-1)!} \sum_{k=m-1}^{\infty} k(k-1) \cdots (k-m+2) \int_{0}^{1} x^{k-m+1} \ln^{n} x \, dx \\ &= \frac{1}{(m-1)!} \sum_{k=m-1}^{\infty} k(k-1) \cdots (k-m+2) \frac{(-1)^{n} n!}{(k-m+2)^{n+1}}\\ &= \frac{1}{(m-1)!} \sum_{k=m-1}^{\infty} \sum_{j=0}^{m-1} s(m-1,j) \ k^{j} \ \frac{(-1)^{n} n!}{(k-m+2)^{n+1}} \\ &= (-1)^{n} \frac{n!}{(m-1)!} \sum_{j=0}^{m-1} s(m-1,j) \sum_{k=m-1}^{\infty} \frac{k^{j}}{(k-m+2)^{n+1}} \end{align} $$
But I don't quite see how the last line is equivalent to the right side of $(1)$. (Wolfram Alpha does say they are equivalent for at least a few particular values of $m$ and $n$.)