Express $S =\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\ldots+\frac{1}{(n-2)\cdot(n-1)}+\frac{1}{n\cdot(n+1)}$ in terms of $n$.
Here's what I have done so far:
$$\begin{align*} S &=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{n-2}-\frac{1}{n-1}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right)\\[5pt] &= \left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{n}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots+\frac{1}{n+1}\right)\\[5pt] &= \sum_{k=1}^n \frac{1}{2k-1} - \sum_{k=1}^{n+1} \frac{1}{2k} \\[5pt] \end{align*}$$
How do I continue the problem from here? Is it even possible?