Find the following limit $$\lim_{n \to \infty}\left(\frac{1}{2}+\frac{3}{2^2}+\frac{5}{2^3}+ \dots +\frac{2n-1}{2^n}\right)$$
I don´t get catch a idea, I notice that $$\left(\frac{3}{2}+\frac{5}{2^2}+\frac{7}{2^3}+\cdots + \frac{2n+1}{2^n} \right)$$ is such that
$$ (\frac{3}{2}-\frac{1}{2})=1, \, (\frac{5}{2^2}-\frac{3}{2^2})=\frac{1}{2},\, \, (\frac{7}{2^3}-\frac{5}{2^3})=\frac{1}{4}\cdots (\frac{2n+1}{2^n}-\frac{2n-1}{2^n})=\frac{1}{2^{n-1}}\text{Which converges to 0 }$$
Too I try use terms of the form $\sum_{n=1}^{\infty}\frac{2n}{2^n}$ and relatione with the orignal sum and consider the factorization and try sum this kind of terms$$\frac{1}{2}\lim_{n \to \infty }\left(1+\frac{3}{2}+\frac{5}{2^2}+ \dots +\frac{2n-1}{2^{n-1}}\right)$$.
Update:
I try use partial sum of the form $$S_1=\frac{1}{2},S_{2}=\frac{5}{2^2},S_{3}=\frac{15}{2^3},S_{4}=\frac{37}{2^4} $$ and try find $\lim_{n \to \infty }S_{n}$ but I don´t get the term of the numerator.
Unfortunelly I don´t get nice results, I hope someone can give me a idea of how I should start.

So you can derive a formula for the right hand side after seeing that the left hand side is a geometric series. Then plug in $x=1/2$
– Mason Feb 26 '21 at 00:10