We know that \begin{align*} \frac{|GL_n(\mathbb{F}_q)|}{|\mathcal{M}_N(\mathbb{F}_q)|} &= \frac{\prod \limits_{k=0}^{n-1} (q^n - q^k)}{q^{n^2}} \\ &= \prod_{k=1}^n \left( 1-q^{-k} \right) \\ &= \left(\frac{1}{q}, \frac{1}{q} \right)_n, \end{align*} where the last expression denotes the q-Pockhammer symbol.
How can we generalize this to $m\times n$ matrices. I mean what is the ratio of matrices which have full rank to total number of matrices.
Thanks.