Version of 01.04.2021.
Since the task is homogenious, one may denote
$$s=x+y+z=3,\quad r=xy+yz+zx,\quad p=xyz,\tag1$$
wherein
$$r\le\dfrac13s^2=3,\quad p\le\dfrac1{27}s^3=1. \tag2$$
At the same time,
$$p=(3-u)v,\quad r=(3-u)u+v,\tag3$$
where
$$u=x+y\in[0,3],\quad v=xy\in\left[0,\dfrac{u^2}4\right].\tag4$$
The given inequality takes the forms of
$$4\big(x(s-y)(s-z)+y(s-z)(s-x)+z(s-x)(s-y)\big)^2$$
$$ \ge \big(16(s-x)(s-y)(s-z)-56xyz\big)(s-x)(s-y)(s-z)$$
$$ = \big(4(s-x)(s-y)(s-z)-7xyz\big)^2 -49(xyz)^2,$$
or
$$4(s^3-2sr+3p)^2+49p^2\ge (4sr-11p)^2,\tag5$$
wherein, taking in accouint $(1)-(4),$
$$4(s^3-2sr+3p)^2+49p^2-(4sr-11p)^2$$
$$=4(27-6r+3p)^2+49p^2-(12r-11p)^2$$
$$=12(-108r+10pr-3p^2+54p+243)=12f(u,v),$$
$$f(u,v)=243-324u+108u^2+54v+36uv-60u^2v+10u^3v+3v^2+8uv^2-3u^2v^2,$$
$$f'_v(u,v)=54+36u-60u^2+10u^3+6v+16uv-6u^2v.$$
Then at the bounds by $\;v\;$
- $f(u,0)=27(3-2u)^2\ge0,$
- $f\left(u,\dfrac{u^2}4\right)=\dfrac3{16}(1296-1728u+648u^2+48u^3-79u^4+16u^5-u^6)$
$=\dfrac3{16}(9-u^2)(u^2-8u+12)^2\ge0.$
At the stationary points
$$2f(u,v)=2f(u,v)-v\,f'_v(u,v)=g(u,v),$$
where
- $g(u,v)=486-648u+216u^2+(54+36u-60u^2+10u^3)v,$
- $g(u,0)=54(3-2u)^2\ge0,$
- $g\left(u,\dfrac{u^2}4\right)=\dfrac12(972-1296u+459u^2+18u^3-30u^4+5u^5)$
$=\dfrac52\left(u+\dfrac{58}{15}\right)\left(u-\dfrac85\right)^2\left(u-\dfrac{10}3\right)^2 +\dfrac{253}{15}\left(u+3\right)\left(u-\dfrac53\right)^2$
$+\dfrac1{1350}\left(95150-119630u+38207u^2\right)\ge0.$
Since $\;g(u,v)\;$ is a linear function by $\;v,\;$ it achives the least value at the edges of the area.
Proved!