For $0<b \leq a$ prove that $$\frac{1}{8}\left(\frac{(a-b)^2}{a} \right) \leq \frac{a+b}{2}-\sqrt{ab} \leq \frac{1}{8}\left(\frac{(a-b)^2}{b} \right) $$
I was trying compare the following expressions $$\frac{a+b}{2}-\sqrt{ab} =\frac{1}{2}(\sqrt{a}-\sqrt{b})^2$$
$$\frac{1}{8}\left(\frac{(a-b)^2}{a} \right)=\frac{1}{2a}\left(\frac{a-b}{2}\right)^2\leq\frac{1}{a}(a-b)^2$$ and use the fact that $\sqrt{a} \leq a$ when $a>0$ but I don´t get good results.
Any hint of how I should start?
i) $a+b - 2\sqrt{ab} = (\sqrt a - \sqrt b)^2$
ii) $a-b = (\sqrt a - \sqrt b) (\sqrt a + \sqrt b)$
iii) $2\sqrt b \leq \sqrt a + \sqrt b \leq 2\sqrt a$
– Math Lover Mar 06 '21 at 19:27