I would like to know what these fractional exponents means in a derivative $\frac{d}{dx}$ operator. Like, I've seen $\frac{d^2}{dx^2}$ but I don't know what $\frac{d^{\frac{1}{2}}}{dx^{\frac{1}{2}}}$ means.
-
See here. – Mhenni Benghorbal May 30 '13 at 02:29
-
fractional calculus – Maesumi May 30 '13 at 03:16
2 Answers
What you have is what is usually referred to as a semiderivative. I would say that this notation is a bit incomplete, since one also has to account for a lower limit, in the case of differintegrals whose orders are not nonnegative integers.
In particular, letting ${}_a D_x^{1/2}f(x)$ be the semiderivative, one possible definition is the Riemann-Liouville form,
$${}_a D_x^{1/2}f(x)=\frac{f(a)}{\sqrt{\pi(x-a)}}+\frac1{\sqrt\pi}\int_a^x \frac{f^\prime(t)}{\sqrt{x-t}}\mathrm dt$$
The semiderivative operator can be thought of this way: this is the operator that, when applied to a function twice, gives the ordinary (first order) derivative.
If you want to learn more about this, I would suggest picking up Oldham/Spanier's The Fractional Calculus.
- 75,051
-
is there a good reason to say it is "the operator such that ..." instead of "an operator such that ..." ? – mercio May 30 '13 at 15:45
-
But isn't the incompleteness of the same type as with the indefinite integral, where you also don't give an explicit lower bound to the integral? – celtschk May 30 '13 at 15:46
-
@celtschk, Right, so I decided to be definite here; I'm not particularly fond of the indefinite form here. – J. M. ain't a mathematician May 30 '13 at 15:52
-
@mercio, I now see that I only presented Riemann-Liouville and neglected Caputo; I might edit this later... – J. M. ain't a mathematician May 30 '13 at 15:53
$\frac{d^\frac{1}{2}}{dx^\frac{1}{2}}$ is the operator such that $\frac{d^\frac{1}{2}}{dx^\frac{1}{2}}$$\frac{d^\frac{1}{2}}{dx^\frac{1}{2}}$=$\frac{d}{dx}$, ie. $\frac{d^\frac{1}{2}}{dx^\frac{1}{2}}$$\frac{d^\frac{1}{2}}{dx^\frac{1}{2}}f$=$\frac{d}{dx}f$ for differentiable functions $f$, much like how $\frac{d^2}{dx^2}=\frac{d}{dx}\frac{d}{dx}$. It is basically the square root of $\frac{d}{dx}$. For example, $\frac{d^\frac{1}{2}}{dx^\frac{1}{2}}e^{ax}=\sqrt{a}e^{ax}$, since then $\frac{d^\frac{1}{2}}{dx^\frac{1}{2}}\sqrt{a}e^{ax}=ae^{ax}=\frac{d}{dx}e^{ax}$.
- 6,442
- 2
- 24
- 40