$$\lim_{x\rightarrow\infty}\sum_{k=1}^{n}\frac{6(k+1)^2}{n^3}\sqrt{1+\frac{2(k+1)^3}{n^3}}$$
How do we determine if it is a Right/Left or midpoint Riemann Sum?
How do we find the values a and b?
Is $$f(x)=\frac{3x^2}{2}\sqrt{1+\frac{x^3}{4}}$$ possible? if $$x=\frac{2(k-1)}{n}$$
But then again how do I find the interval for which I have to integrate?