How can I prove that $S_1(n)=\sum_{m = 0}^n\binom{n}{2m}(-1)^m$ is equal to $2^{\frac{n}{2}}\cos\left(\frac{n\pi}{4}\right)$ using the binomial expansion $(1+z)^n=\sum_{r=0}^n\binom{n}{r}z^r$?
Asked
Active
Viewed 54 times
1 Answers
1
Hint
As $-1=i^2,$ let $z=i$
Use $$(1+z)^n+(1-z)^n=?$$
and $1+i=\sqrt2e^{i\pi/4}$ using Intuitive explanation of Euler's formula $e^{it}=\cos(t)+i\sin(t)$
lab bhattacharjee
- 274,582