Definition: Let $A$ be a set and let $G$ be an equivalence relation in A. If $x ∈ A$, then the equivalence class of $x$ modulo $G$ is the set $G_x$ defined as follows: $$G_x=\{y\in A\mid (y,x)\in G\}=\{y\in A\mid y\sim _G x\}.$$
- Let $G$ and $H$ be equivalence relations in $A$. Prove that each equivalence class modulo $G ∩ H$ is the intersection of an equivalence class modulo $G$ with an equivalence class modulo $H$. More exactly, $$(G\cap H)_x\subseteq G_x\cap H_x,\quad \forall x\in A.$$
- Let $G$ and $H$ be equivalence relations in $A$, and assume that $G ∪ H$ is an equivalence relation in $A$. Prove that each equivalence class modulo $G ∪ H$ is the union of an equivalence class modulo $G$ with an equivalence class modulo $H$. More exactly, $$(G\cup H)_x=G_x\cup H_x,\quad \forall x\in A.$$
My attempt:
- Let $x\in A$. $$\begin{align*}y\in (G\cap H)_x&\Rightarrow (y,x)\in (G\cap H)\ \wedge\ y\in A\\ &\Rightarrow (y,x)\in G\ \wedge \ (y,x)\in H\ \wedge\ y\in A\\ &\Rightarrow y\in G_x\ \wedge\ y\in H_x\\ &\Rightarrow y\in G_x\cap H_x. \end{align*}$$
- Let $x\in A$. $$\begin{align*}y\in (G\cup H)_x&\Leftrightarrow (y,x)\in (G\cup H)\ \wedge\ y\in A\\ &\Leftrightarrow [(y,x)\in G\ \vee\ (y,x)\in H]\ \wedge\ y\in A\\ &\Leftrightarrow ((y,x)\in G\ \wedge\ y\in A) \vee\ ((y,x)\in H\ \wedge\ y\in A) \\ &\Leftrightarrow y\in G_x\ \vee \ y\in H_x\\&\Leftrightarrow y\in G_x\cup H_x \end{align*}$$
My proof is right?