Let $f:(a,b)\to\mathbb{R}$ and assume that there is $C>0$ and $\alpha>1$ such that $|f(x)-f(y)|\leqslant C|x-y|^{\alpha},\forall x,y\in(a,b)$
Prove that $f$ is constant in $(a,b)$.
Prove that $\underset{x\to y}{\lim}\frac{f(x)-f(y)}{x-y}=0$
Ie $(\forall\epsilon>0)(\exists\delta>0):|x-y|<\delta\implies|\frac{f(x)-f(y)}{x-y}|<\epsilon$
Suppose that $|x-y|<1$.
Then by the stated inequality, $\frac{|f(x)-f(y)|}{|x-y|}\leqslant\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}\leqslant C\iff\frac{|f(x)-f(y)|}{|x-y|}\leqslant C$.
I need to show that this is smaller than $\epsilon$ but I'm not too sure where to go from here.