$$A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}$$
When $A^3 = O$ (zero matrix) is satisfied, what condition do the four real numbers $a, b, c, d$ meet?
I cubed $A$:
$A^3 = \begin{bmatrix} a(a^2+bc)+bc(a+d) & b(a^2+bc) + bd(a+d) \\ ac(a+d)+c(bc+d^2) & bc(a+d)+d(bc+d^2)\end{bmatrix}$
I don’t know how it is going to be.
Post script
Thank you for the replies, I might have found the answers:
$$ \begin{eqnarray} A^3_{11} * d - A^3_{12} * c = 0 \\ (ad-bc)(a^2+bc) = 0 \\ ad-bc = 0 \end{eqnarray} $$
But why $ a^2 + bc \neq 0$?