The book of Thoms Jech on set theory mentions some equalities involving $\aleph_{\omega}$:
- $\aleph_\omega^{\aleph_1} = \aleph_\omega^{\aleph_0} \cdot 2^{\aleph_1}$
- If $\alpha < \omega_1$, then $\aleph_\alpha^{\aleph_1} = \aleph_\alpha^{\aleph_0} \cdot 2^{\aleph_1}$.
- If $\alpha < \omega_2$, then $\aleph_\alpha^{\aleph_2} = \aleph_\alpha^{\aleph_1} \cdot 2^{\aleph_2}$
How can the above equalities be proved?