Starting with $2,$ the minimum natural number $>1$ co-prime with $13,$
$2^1=2,2^2=4,2^3=8,2^4=16\equiv3,2^5=32\equiv6,2^6=64\equiv-1\pmod{13}$
As $2^6=(2^3)^2,$ so $2^3=8$ is a solution of $x^2\equiv-1\pmod{13}$
Now, observe that $x^2\equiv a\pmod m\iff (-x)^2\equiv a$
So, $8^2\equiv-1\pmod {13}\iff(-8)^2\equiv-1$
Now, $-8\equiv5\pmod{13}$
If we need $x^2\equiv-1\pmod m$ where integer $m=\prod p_i^{r_i}$ where $p_i$s are distinct primes and $p_i\equiv1\pmod 4$ for each $i$ (Proof)
$\implies x^2\equiv-1\pmod {p_i^{r_i}}$
Applying Discrete logarithm with respect to any primitive root $g\pmod {p_i^{r_i}},$
$2ind_gx\equiv \frac{\phi(p_i^{r_i})}2 \pmod {\phi(p_i^{r_i})}$
as if $y\equiv-1\pmod {p_i^{r_i}}\implies y^2\equiv1 $
$\implies 2ind_gy\equiv0 \pmod {\phi(p_i^{r_i})}\implies ind_gy\equiv \frac{\phi(p_i^{r_i})}2 \pmod {\phi(p_i^{r_i})}$ as $y\not\equiv0\pmod { {\phi(p_i^{r_i})}}$
Now apply CRT, for relatively prime moduli $p_i^{r_i}$
For example, if $m=13, \phi(13)=12$ and $2$ is a primitive root of $13$
So, $2ind_2x\equiv 6\pmod {12}\implies ind_2x=3\pmod 6$
$\implies x=2^3\equiv8\pmod{13}$ and $x=2^9=2^6\cdot2^3\equiv(-1)8\equiv-8\equiv5\pmod{13}$