Let $X,Y,Z$ be i.i.d. $\mathbb{R}$-valued random variables each with the uniform distribution on [0,1]. ie. $X,Y,Z\sim \mathcal{U}[0,1]$.
Determine the probability density function of X+Y+Z.
For this question, Can I consider this equals $\int\limits_{x=0}^1\int\limits_{y=0}^1 \int\limits_{z=0}^1 [yz,1]1 dx dy dz$?