Find $ f ( 2021 ) $ if the function $ f : \mathbb R \to \mathbb R $ satisfies the following Conditions:
- $ f ( 1 ) = 1 $;
- $ f ( x + y ) = f ( x ) + f ( y ) $, $ \forall x , y \in \mathbb R $;
- $ f \left( \frac 1 x \right) = \frac { f ( x ) } { x ^ 2 } $, $ \forall x \in \mathbb R \setminus \{ 0 \} $.
I tried it to solve it using the first two conditions:
$ f(1)=1 $ is given. $ \quad $ (using the first condition)
So, if we take $ x = y = 1 $, we will have $ f ( 2 ) = f ( 1 + 1 ) = f ( 1 ) + f ( 1 ) = 1 + 1 = 2 $. $ \quad $ (using the second condition)
Now, if $ x = 2 $ and $ y = 1 $, we have $ f ( 3 ) = f ( 2 + 1 ) = f ( 2 ) + f ( 1 ) = 2 + 1 = 3 $. $ \quad $ (using the second condition and $ f ( 2 ) = 1 $ from above)
The same pattern will give us $ f ( 4 ) = 4 $ and if we apply it generally it will give us $ f ( x ) = x $ for $ x \in \mathbb Z _ + $.
As $ 2021 \in \mathbb Z _ + $, we get $ f ( 2021 ) = 2021 $.
The question seems to be interesting. But I found the above reasoning to be easy, and I'm not sure my solution is correct or not.