In this post there is an intermediate step to compute $ \int_{(0,\infty)}e^{(-c_1+it)x_1}\frac{\sin x_1}{x_1} dx $ where I can't find how to work it out.
To simplify the notation Let's just rename the parameters so the question is to show $$ I(a):= \int_{(0,\infty)}e^{(-a+it)x}\frac{\sin x}{x} \text{d}x = \frac{1}{2i} \log \left(\frac{a+i(1-t)}{a-i(1+t)}\right) $$
I've tried so far:
\begin{align*} I'(a)&:=-\int_{(0,\infty)}e^{(-a+it)x } \sin x \text{d}x \\ &= \frac{1}{a-it}e^{(-a+it)x } \sin x |_0^\infty - \frac{1}{a-it}\int_{(0,\infty)}e^{(-a+it)x } \cos x \text{d}x \\ &= \frac{1}{(-a+it)^2} e^{(-a+it)x } \cos x |_0^\infty +\frac{1}{(-a+it)^2}\int_{(0,\infty)}e^{(-a+it)x } \sin x \text{d}x \\ &= -\frac{1}{(-a+it)^2} -\frac{1}{(-a+it)^2} I'(a) \end{align*}
So, $$I'(a) = -\frac{1}{(a-it)^2+1} = \frac{1}{2i} \left(\frac{1}{a-it+i}-\frac{1}{a-it-i}\right)$$
Hence
\begin{align*} I(a)&=I(0)+\int_0^{a} I'(a) \text{d}a \\ &=I(0)+\frac{1}{2i} \int_0^{a} \left(\frac{1}{a-it+i}-\frac{1}{a-it-i}\right) \text{d}a \\ &=I(0)+\frac{1}{2i} \left.\log \left(\frac{a-it+i}{a-it-i}\right) \right|_0^{a} \\ &=I(0) + \frac{1}{2i} \log \left(\frac{a+i(1-t)}{a-i(1+t)}\right) -\frac{1}{2i} \log \left(-\frac{1-t}{1+t}\right) \end{align*}
Now I'm stuck at $I(0)$. Note that $I(0)$ shall be interpreted as $$\lim\limits_{a\to 0^+}I(a) = \lim\limits_{a\to 0^+} \int_{(0,\infty)}e^{(-a+it)x}\frac{\sin x}{x} \text{d}x $$, however I can't see how to compute this.
And, finally, @metamorphy mentioned that the Frullani integral produces the correct result almost immediately. However I also can't see how.
Pls kindly suggest.