Yes, again, this type of question. Similar ones this and this.
I come with another variant. Let $f\in\mathcal{S}$, i.e. Schwartz function, and $g\in L^{p}(\mathbb{R}^d),p\in[1,\infty]$. The following should still hold $$ \partial^\alpha(f*g) = (\partial^\alpha f)*g. $$
Basically we only need to prove the following case and the rest is simply by induction.
Here is my proof for $p\in[1,\infty)$, where are use the proposition $$D_i(f*g) = (D_if)*g,$$ provided $f,g\in\mathcal{S}$ and $D_i:=\frac {\partial}{\partial x_i}$.
Taking arbitrarily fixed $x$, \begin{align*} |D_i(f*g)(x)| &= \left|\lim_{h\rightarrow 0}\frac{f*g(x+he_i)-f*g(x)}{h}\right|\\ &\leq \lim_{h\rightarrow 0}\int_{\mathbb{R}^d}\left|\frac{f(x+he_i-y)-f(x-y)}{h}\right| |g(y)|\,\mathrm{d}y\\ &= \lim_{h\rightarrow 0}\int_{\mathbb{R}^d}|f_h(x-y)| |g(y)|\,\mathrm{d}y\\ &\leq \lim_{h\rightarrow 0}\||f_h(x-\cdot)|\|_{q}\|g\|_p\\ &= \|D_i f\|_{q}\|g\|_p. \end{align*} By taking supremum, we have shown that $D_i(f*g)$ is bounded. Hence $D_i(f*g)(x)$ is well-defined for all $x$.
Then, take a sequence $g_n\in\mathcal{S}$ such that $g_n\rightarrow g$ in $L_p$. Since \begin{align*} |D_i(f*g)-D_i(f*g_n)| &= \lim_{h\rightarrow 0}\left| \int_{\mathbb{R}^d}|f_h(x-y)| |g(y)-g_n(y)|\,\mathrm{d}y \right|\\ &\leq \lim_{h\rightarrow 0}\||f_h(x-\cdot)|\|_{q}\|g-g_n\|_p\\ &= \|D_i f\|_{q}\|g-g_n\|_p \rightarrow \quad \text{as}\quad n\rightarrow 0. \end{align*}
Besides, we know $$D_i (f*g_n) = (D_i f)*g_n,\quad \forall n\in\mathbb{N}.$$ Hence, \begin{align*} |D_i(f*g)-(D_i f)*g| &\leq |D_i(f*g)-(D_i f)*g - D_i (f*g_n) + (D_i f)*g_n|\\ &\leq |D_i(f*g)- D_i (f*g_n)| + |(D_i f)*g_n-(D_i f)*g|\\ &\leq |D_i(f*g)- D_i (f*g_n)| + \|(D_i f)\|_{q}\|g_n-g\|_{p}\rightarrow 0 \quad\text{as}\quad n\rightarrow \infty, \end{align*} where we applied Young's inequality in the last step.
Is it correct? And how should I work on the case $p=\infty$.