3

We have $$ \frac{1}{4} -\frac{1}{4}{_4F}_3\left({-\frac{1}{5},\frac{1}{5},\frac{2}{5},\frac{3}{5}\atop\frac{1}{4},\frac{1}{2},\frac{3}{4}};1\right) -\frac{1}{\sqrt[4] {5}}{_4F}_3\left({\frac{1}{20},\frac{9}{20},\frac{13}{20},\frac{17}{20}\atop\frac{1}{2},\frac{3}{4},\frac{5}{4}};1\right)\\ +\frac{1}{5\sqrt{5}}{_4F}_3\left({\frac{3}{10},\frac{7}{10},\frac{9}{10},\frac{11}{10}\atop\frac{3}{4},\frac{5}{4},\frac{3}{2}};1\right) -\frac{7}{50\,5^{3/4}}{_4F}_3\left({\frac{11}{20},\frac{19}{20},\frac{23}{20},\frac{27}{20}\atop\frac{5}{4},\frac{3}{2},\frac{7}{4}};1\right)\\ =-\frac{1}{4}\left(1+\sqrt[3]{5/9}\left(\sqrt[3]{9+4\sqrt 6}-\sqrt[3]{4\sqrt 6-9}\right)\right). $$

Through indirect methods, this relationship has been proven true by showing that both sides of the equality are solutions to $$ 4x^3+3x^2+2x+1=0. $$

How can we prove this relation directly by reducing the hypergeometric functions?

While I have some experience with reducing hypergeometric functions, I don't even know where to begin with this one due to the rational parameters with denominator $20$. My initial thought were to work with the integral representation DLMF 16.5.2 to write the $_4F_3(1)$ functions as double integrals of $_2F_1(\cdot)$. For example, taking the first hypergeometric function above we have $$ {_4F}_3\left({-\frac{1}{5},\frac{1}{5},\frac{2}{5},\frac{3}{5}\atop\frac{1}{4},\frac{1}{2},\frac{3}{4}};1\right)=(constant)\int_0^1\int_0^1u^{\frac{4}{20}-1}(1-u)^{\frac{1}{20}-1}v^{\frac{8}{20}-1}(1-v)^{\frac{2}{20}-1} {_2F_1}\left({-\frac{4}{20},\frac{12}{20}\atop \frac{15}{20}};uv\right)\,\mathrm du\mathrm dv. $$ At least in this form there seems to be some hope of reducing the $_2F_1(\cdot)$ function in the integrand, which may then lead to the desired form.

1 Answers1

7

Remark
There is this paper

Beukers, Frits, Hypergeometric functions, how special are they?, Notices Am. Math. Soc. 61, No. 1, 48-56 (2014). ZBL1323.33007.

Plugging into Theorem 2 of that paper, we find that $$ {_4F}_3\left({-\frac{1}{5},\frac{1}{5},\frac{2}{5},\frac{3}{5}\atop\frac{1}{4},\frac{1}{2},\frac{3}{4}};x\right),\quad {_4F}_3\left({\frac{1}{20},\frac{9}{20},\frac{13}{20},\frac{17}{20}\atop\frac{1}{2},\frac{3}{4},\frac{5}{4}};x\right),\quad {_4F}_3\left({\frac{3}{10},\frac{7}{10},\frac{9}{10},\frac{11}{10}\atop\frac{3}{4},\frac{5}{4},\frac{3}{2}};x\right),\quad {_4F}_3\left({\frac{11}{20},\frac{19}{20},\frac{23}{20},\frac{27}{20}\atop\frac{5}{4},\frac{3}{2},\frac{7}{4}};x\right) $$ are all algebraic functions. Probably you would have to consult the references of that paper to find explicit polynomials that they satisfy.


Maple code

> # Beukers, Notices, January 2014, p. 48

> reducemod1:=proc(s) > {seq(x-floor(x),x in s)}; > end; > > isirreducible := proc(l1,l2) > local s1,s2; > s1:=reducemod1({op(l1)}); > s2:=reducemod1({op(l2)} union {1}); > if s1 intersect s2 = {} then return(true) else return(false) fi; > end; > > isinterlaced := proc(l1,l2) > isinterlacedL(reducemod1({op(l2)} union {1}), reducemod1({op(l1)})); > end; > > isinterlacedL := proc(l1,l2) > local s1,x; > x:=min(l1); > if x >= min(l2) then return(false); fi; > s1 := l1 minus {x}; > if s1 = {} then > if nops(l2) <= 1 then return(true) else return(false); fi; > fi; > isinterlacedL(l2,s1); > end; > > thm2 := proc(l1,l2) # is it algebraic? > local s1,s2,D,r,x; > s1:= reducemod1(l1); > s2:= reducemod1(l2) union {0}; > if s1 intersect s2 <> {} then return("reducible"); fi; > D:=lcm(seq(map(denom,s1 union s2))); > for r from 1 to D-1 do > if igcd(r,D) = 1 then > if not isinterlaced({seq(rx,x in s1)},{seq(rx,x in s2)}) then return("transcendental"); fi; > fi; > od; > return("algebraic"); > end; > > thm2([1/4,1/4],[1/2]); "transcendental"

> thm2([3/10,7/10,9/10,11/10],[3/4,5/4,3/2]); "algebraic"

GEdgar
  • 111,679