Edit
As commented bellow by @Donald Splutterwit and @ Elliot Yu, it seems that my computation is numerically correct and the post is wrong! I also added a corollary from this computation.
I saw the following statement here
$$\boxed{\int_{0}^{1}\frac{\log(1-x)\log(1-x^2)}{x}dx=\frac{7}{4}\zeta(3)}$$
And I wanted to proof it. My approach was the following
$$I=\int_{0}^{1}\frac{\log(1-x)\log(1-x^2)}{x}dx=\int_{0}^{1}\frac{\log(1-x)\log[(1-x)(1+x)]}{x}dx$$
$$=\int_{0}^{1}\frac{\log(1-x)\log(1-x)}{x}dx+\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx$$
$$=\underbrace{\int_{0}^{1}\frac{\log^2(1-x)}{x}dx}_{I_{1}}+\underbrace{\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx}_{I_{2}}$$
$$I_{1}=\int_{0}^{1}\frac{\log^2(1-x)}{x}dx$$
let $1-x=t$
$$I_{1}=\int_{0}^{1}\frac{\log^2(t)}{1-t} dt$$
$$=\int_{0}^{1}\log^2(t)\sum_{k=0}^{\infty}t^kdt$$
$$=\sum_{k=0}^{\infty}\int_{0}^{1}t^k\log^2(t)dt$$
Now use the fact that
$$\boxed{\int_{0}^{1}x^m \log^n(x)dx=\frac{(-1)^{n}n! }{(m+1)^{n+1}}}$$
for $$n=2 \,\,\text{and} \,\, m=k $$
$$I_{1}=\sum_{k=0}^{\infty}\frac{(-1)^{2}2! }{(k+1)^{3}}$$
$$\boxed{\int_{0}^{1}\frac{\log^2(1-x)}{x}dx=2\zeta(3)}$$
The second integral is a little trickier
$$I_{2}=\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx$$
Observe the following
$$\Big(\log(1-x)+\log(1+x) \Big)^2=\log^2(1-x)+2\log(1-x)\log(1+x)+\log^2(1+x)$$
$$\log(1-x)\log(1+x)=\frac{\Big(\log[(1-x)(1+x)] \Big)^2-\log^2(1-x)-\log^2(1+x)}{2}$$
$$\log(1-x)\log(1+x)=\frac{\log^2(1-x^2)-\log^2(1-x)-\log^2(1+x)}{2}$$
dividing both sides by $x$ and integrating from $0$ to $1$
$$\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=\frac{1}{2}\int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx-\frac{1}{2}\int_{0}^{1}\frac{\log^2(1-x)}{x}dx-\frac{1}{2}\int_{0}^{1}\frac{\log^2(1+x)}{x}dx$$
Now we have to evaluate the three integrals on the RHS and we are done. I´ll state only the value of each integral since their proof is easy to find on this forum.
$$\int_{0}^{1}\frac{\log^2(1-x^2)}{x}dx=\zeta(3)$$
$$\int_{0}^{1}\frac{\log^2(1-x)}{x}dx=2\zeta(3)$$
$$\int_{0}^{1}\frac{\log^2(1+x)}{x}dx=\frac{1}{4}\zeta(3)$$
Putting all together we get
$$I_{2}=\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=-\frac{5}{8}\zeta(3)$$
Now summing the results of $I_{1}$ and $I_{2}$ we get the final result which differs form the above statement!
$$\int_{0}^{1}\frac{\log(1-x)\log(1-x^2)}{x}dx=2\zeta(3)-\frac{5}{8}\zeta(3)=\frac{11}{8}\zeta(3)$$
A Corollary
We just computed the integral
$$\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=-\frac{5}{8}\zeta(3)$$
On the other hand we can show that this integral equals
$$\sum_{n=1}^{\infty}\frac{(-1)^n H_{n}}{n^2}$$ and conclude that
$$\sum_{n=1}^{\infty}\frac{(-1)^{n-1} H_{n}}{n^2}=\frac{5}{8}\zeta(3)$$
Proof:
Expanding $\log(1+x)$ in Taylor series we get
$$I=\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\int_{0}^{1}x^{n-1}\log(1-x)dx$$
Integrating by parts we get:
$$I=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\bigg\{\frac{\log(1-x)(x^n-1)}{n}\Big|_{0}^{1}+\frac{1}{n}\int_{0}^{1}\frac{x^n-1}{1-x}dx \bigg\}$$
$$I=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\bigg\{-\frac{1}{n}\int_{0}^{1}\frac{1-x^n}{1-x}dx \bigg\}$$
$$I=\sum_{n=1}^{\infty}\frac{(-1)^{n-1} }{n}\bigg\{-\frac{1}{n}H_{n} \bigg\}$$
$$\boxed{\int_{0}^{1}\frac{\log(1-x)\log(1+x)}{x}dx=-\sum_{n=1}^{\infty}\frac{(-1)^{n-1}H_{n} }{n^2}}$$
and therefore
$$\boxed{\sum_{n=1}^{\infty}\frac{(-1)^{n-1} H_{n}}{n^2}=\frac{5}{8}\zeta(3)}$$