Prove that $$\frac{1}{1⋅2}+\frac{1}{3⋅4}+\frac{1}{5⋅6}+....+\frac{1}{199⋅200}= \frac{1}{101}+\frac{1}{102}+\frac{1}{103}...+\frac{1}{200}$$
My Approach:
$T_{r}=\frac{1}{\left(2r\right)⋅\left(2r-1\right)}$
$\sum_{n=1}^{100}(T_{r}=\frac{1}{\left(2r\right)⋅\left(2r-1\right)}=\frac{\left(2r\right)-\left(2r-1\right)}{\left(2r\right)⋅\left(2r-1\right)}=\frac{1}{\left(2r-1\right)}-\frac{1}{2r})$
This gives:
$S=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+.......+\frac{1}{197}-\frac{1}{198}+\frac{1}{199}-\frac{1}{200}$
which apparently leads to a dead end. Please help me out.