Let $(a,b)$ and $f\in L_{\text{loc}}^1(a,b)$. For $x_0\in (a,b)$, consider $$ F(t)=\int_{x_0}^{t}f(s)ds. $$ Prove that, $DF=f$ (towards theoretical distribution).
I thought of the following: Let $\varphi$, we had $$ \left\langle DF, \varphi \right\rangle = \left\langle F, \dfrac{d}{dx}\varphi \right\rangle=\int_a^bF(x)\dfrac{d}{dx}\varphi (x)dx = \int_a^b \int_{x_0}^xf(s)ds\dfrac{d}{dx}\varphi (x)dx... $$ but it leads to nothing. I also thought about, $$ \left| \left\langle DF, \varphi \right\rangle - \left\langle f, \varphi \right\rangle \right| = \left| \left\langle F, \dfrac{d}{dx}\varphi \right\rangle - \left\langle f, \varphi \right\rangle \right|=\int_a^bF\dfrac{d}{dx}\varphi-\int_a^bf\varphi... $$