Analogous Statement: A linear transformation is norm preserving iff inner product preserving.
Notation. $\langle \boldsymbol{a},\boldsymbol{b} \rangle = \boldsymbol{a}\cdot\boldsymbol{b}$ (the dot product or standard inner product).
Note that $f(\boldsymbol{y}) = \|\boldsymbol{y}\|$ for any $\boldsymbol{y}\in \mathbb{R}^n$ (as $f(\boldsymbol{0}) = \boldsymbol{0}$).
Recall that $\langle \boldsymbol{x} , \boldsymbol{x}\rangle= \|\boldsymbol{x}\|^2$ for any $\boldsymbol{x} \in \mathbb{R}^n$. Let's consider $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$. Then we have that
\begin{align}
\|f(\boldsymbol{x})-f(\boldsymbol{y})\|^2 &= \|f(\boldsymbol{x})\|^2+\|f(\boldsymbol{y})\|^2 -2\langle f(\boldsymbol{x}),f(\boldsymbol{y})\rangle
\\&= \|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 - 2 \langle f(\boldsymbol{x}), f(\boldsymbol{y})\rangle
\end{align}
Observe that
$$ \|f(\boldsymbol{x}) - f(\boldsymbol{y})\|^2 = \|\boldsymbol{x}-\boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 - 2 \langle \boldsymbol{x}, \boldsymbol{y}\rangle $$
Combining the two equations together, we obtain
$$ \langle f(\boldsymbol{x}), f(\boldsymbol{y}) \rangle = \langle\boldsymbol{x}, \boldsymbol{y}\rangle $$