I got a problem that said "find the Moment-generating function of $$f(t)=\frac{1}{4}e^{-t/4}\mathbb{I}_{(0,\infty)}(t)$$ And I solved it like this but I don't know if this' right $$\begin{align*}&M_{T}(y)=E\left [ e^{yt} \right ]\\&=\int_{0}^{\infty}e^{yt}\frac{1}{4}e^{-t/4}\,dt\\&=\frac{1}{4}\int_{0}^{\infty}e^{yt-t/4}\,dt \end{align*}$$ so $\lim_{t\rightarrow \infty}\frac{1}{4}\int_0^\infty e^{yt-t/4} \,dt$
Let $u=yt-\frac{t}{4}\Rightarrow du=(y-\frac{1}{4})dt \Rightarrow \frac{1}{y-\frac{1}{4}}\, du=dt$ $$\begin{align*}&\lim_{t\rightarrow \infty}\frac{1}{4}\int_0^{yt-\frac{t}{4}} e^u \frac{1}{y-\frac{1}{4}} \, du\\&=\lim_{t\rightarrow \infty}\frac{1}{4(y-\frac{1}{4})} \int_0^{yt-\frac{t}{4}} e^u \, du\\&=\lim_{t\rightarrow \infty}\frac{e^{yt-\frac{t}{4}}-1}{4y-1} \end{align*}$$ So $M_T(y)=\lim_{t\rightarrow \infty}\frac{e^{yt-\frac{t}{4}}-1}{4y-1}$