I have to solve the following ODE $$y'=\frac{xe^{y}}{4x-1}$$ with $y(0)=0$. From the equation, I get $$\int e^{-y}dy=\int\frac{x}{4x-1}dx$$ In the second integral, if $u=4x-1\Rightarrow x=(u+1)/4$ and $du=4dx$; hence $$\int\frac{x}{4x-1}dx=\frac{1}{16}(4x-1+\ln|4x-1|)$$ but, if I evaluate the second integral using long division: $$\frac{x}{4x-1}=\frac{1}{4}\left(1+\frac{1}{4x-1}\right)$$ my final answer will be $$\int\frac{x}{4x-1}dx=\frac{1}{4}\left(x+\frac{1}{4}\ln|4x-1|\right)=\frac{1}{16}(4x+\ln|4x-1|)$$
so, I have two possible solutions: $$-e^{-y}=\frac{1}{16}(4x-1+\ln|4x-1|)+c$$ or $$-e^{-y}=\frac{1}{16}(4x+\ln|4x-1|)+c$$ with $c\in\mathbb{R}$. Using the fact $y(0)=0$, in the first equation $$c=-\frac{15}{16}$$ and in the second one $$c=-1$$ Which one is correct and why?