Let $\{a_n\}$ be any sequence of real numbers such that $\lim_{n\rightarrow\infty}na_n=0$. Prove that $$\lim_{n\rightarrow\infty}\left(1+\frac{1}{n}+a_n\right)^n=e$$
I thought about using binomial theorem. So $\left(1+\dfrac{1}{n}+a_n\right)^n = \left(1+\dfrac{1}{n}\right)^n + na_n\left(1+\dfrac{1}{n}\right)^{n-1} + \dbinom{n}{2}a_n^2\left(1+\dfrac{1}{n}\right)^{n-2}+\ldots$.
The first term has limit $e$, the second term has limit $0$ (because $na_n$ has limit $0$, and $\left(1+\dfrac{1}{n}\right)^{n-1} = \left(1+\dfrac{1}{n}\right)^{n}\left(1+\dfrac{1}{n}\right)^{-1}$ has limit $e$.) But for the other terms, it seems hard to find the limit.