I am supposed to prove: $$B_y=\frac{\mu_0}{4\pi}Iaz\int_{0}^{2\pi} \frac{\sin\phi}{(a^2+y^2+z^2-2ay\sin\phi)^{3/2}}d\phi=\frac{\mu_0Ia^2}{4r^3}\biggl(\frac{3yz}{r^2}\biggl)$$ and $$B_z=\frac{\mu_0}{4\pi}Iaz\int_{0}^{2\pi} \frac{a-y\sin\phi}{(a^2+y^2+z^2-2ay\sin\phi)^{3/2}}d\phi=\frac{\mu_0Ia^2}{4r^3}\biggl(\frac{3z^2}{r^2}-1\biggl)$$
One of the steps to doing it is proving: $$(a^2+y^2+z^2-2ay\sin\phi)^{3/2}\approx r^{-3}\biggl(1-\frac{2ay\sin\phi}{r^2}\biggl)^{-3/2}\approx r^{-3}\biggl(1+\frac{3ay\sin\phi}{r^2}\biggl)$$ using the Binomial theorem (the specific instruction reads "for this step use the binomial theorem, expand up to second term"). How can I go about this step, taking into account the following? $$r=\sqrt{z^2+y^2}>>a$$