I am a newbie to series. From the 3rd page of the MIT OpenCourseWare Single Variable Calculus "Final Review" lecture notes (PDF link via mit.edu), we know that
$$1 + \left(\frac{1}{2} \right) \left(\frac{1}{3} \right) + \left( \frac{1\cdot3}{2\cdot4} \right) \left(\frac{1}{5}\right) + \left(\frac{1\cdot3\cdot5}{2\cdot4\cdot6}\right)\left(\frac{1}{7}\right)+\cdots$$
converges to $\dfrac{\pi}{2}$. The result is achieved by using the Taylor series of $(1+u)^{-\frac{1}{2}}$.
The lecture note left a problem:
How to prove the series' convergence by using L'Hospital rule?
I am not sure how L'Hospital rule helps here. I tried to prove that the $\frac{1}{n^2}$ is the upper limit of each term $\left(\frac{1*3*5*...*(2n-1)}{2*4*6*...*(2n)}\right)\left(\frac{1}{2n+1}\right)$, but got no luck.
Any idea?